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Introduction

/2

» Directional data are vectors whose
support is the hypersphere

Qg = {xeRI: ||x|| =1}.

» Particular cases are the circle
(g = 1) and the sphere (g = 2).

» Statistical methods must account
for the special nature of directional
data. anf2

> Present in different applied fields: Figure: Circular von Mises density.
corner stone in protein modelling.
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Von Mises-Fisher distribution

» The most well known directional distribution is the von Mises-Fisher
(vMF), with density:

q—1

(27) % Taa (k)

parametrized by a mean p € Qg and a concentration x > 0.

fomr(x; o, 5) = Co(k)exp {rx"p}, Cy(k) =

> Density wrt the Lebesgue measure wq in £4. wq denotes also the
area surface of Qg:

wq = we(Qq) = 27r%1/r(%1).

» Gaussian analogue (isotropic):

@ Same MLE characterization property.
Q If X ~ Ngi1 (1, 0%1g41), with g € R7\{0} and 0 > 0, then

Y= (X[IIX]| = 1) ~ vM <||| H“”)' 9
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Rotasymmetry |

> A recurrent assumption about a directional rv X is rotational
symmetry (or rotasymmetry) about some direction 8 € Q.

» In the circular case, rotasymmetry is reflective symmetry, a
feature appearing in most of the distributions.

» In the high-dimensional situation, rotasymmetry is behind many
celebrated distributions such as the vMF.

w2
Y 2y,
W v,
n 4 o
\/n / |

anfz

Figure: Rotasymmetry in the circular and spherical cases. .@
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Rotasymmetry Il

» It is a building block in numerous contributions: inference,
simulation, descriptive statistics.

B Saw, J. G. (1978). A family of distributions on the m-sphere and some
hypothesis tests. Biometrika, 65:69-73.

Bingham, C. and Mardia, K. V. (1978). A small circle distribution on
the sphere Biometrika, 65:379-389.

Wood, A. T. A (1994). Simulation of the von Mises Fisher distribution.
Commun. Stat. Simulat., 23:157-164.

Ley, C., Swan, Y., Thiam, B. and Verdebout, T. (2013). Optimal
R-estimation of a spherical location. Statist. Sinica, 23:305-332.

) &) @ R

Ley, C., Sabbah, C. and Verdebout, T. (2014). A new concept of
quantiles for directional data and the angular Mahalanobis depth.
Electron. J. Stat., 8:795-816.

©

Eduardo Garcia-Portugués Kernel density estimation with directional data under rotational symmetry 7/ 26



Rotasymmetry IlI

Proposition (Rotasymmetry characterization)
Let X a directional rv with density f. These statements are equivalent:

O X < 0OX, where 0 =007 + 3% b;b] is a rotation matrix on
RI*L that fixes 6 € Q.

O f(x) =g (x"8), Vx € Qq, where g : [-1,1] — RT is a link
such that £*(t) = wy_18(t)(1 — t2)3~1 is a density in [-1,1].

> Rotasymmetry is related with the tangent-normal decomposition:
x = t0+ (1 —t2)Bg€, wy(dx) = (1 —t2)F Ldtw, 1(dE),

with t =x70 ¢ [—l, ].], Ee Qq_l and Bg = (bl7 .. ~7bq)(q+1)><q
such that BjBg = I, and ByBJ = 1,41 — 00"

» No monotonicity required in g, axial variables are covered as well.
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KDE with directional data

> For a sample Xy,...,X, ~ f, the Kernel Density Estimator (KDE)
for directional data is

1—xTx 1«
fh( E L( )an Ly (x,X;), x€Qq.
i=1

@ Bai, Z. D., Rao, C. R. and Zhao, L. C. (1988). Kernel estimators of
density function of directional data. J. Multivariate Anal., 27:24-39.

> Kernel: usually L(r) = e~", known as the von Mises kernel. In that
case chq(L) = eX/7 C,(1/h2).
» Normalizing constant cj 4(L) ™' = \g(L)h9(1 + 0 (1)) with

oo
Aq(L):z%—lwq,l/O L(r)r3—tdr.

-1
> “Second moment" of L: bg(L) = [;° L(r)r dr/ [~ L(r)rf = dr.
» Bandwidth: key parameter that controls the smoothness. .@
°
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KDE construction: spherical case

Figure: Left: KDE with n = 1. Right: true density.
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KDE construction: spherical case

Figure: Left: KDE with n = 2. Right: true density.
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KDE construction: spherical case

Figure: Left: KDE with n = 3. Right: true density. ™)
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KDE construction: spherical case

Figure: Left: KDE with n =5. Right: true density.
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KDE construction: spherical case

Figure: Left: KDE with n = 10. Right: true density.
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KDE construction: spherical case

Figure: Left: KDE with n = 20. Right: true density.
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Outline
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Density estimation under rotasymmetry

> Suppose that X is rotasymmetric with density f.
» Goal: estimate semiparametrically f under rotasymmetry.
» Estimation approaches, sorted from weaker to stronger assumptions:
@ Nonparametrically: KDE for directional data.
@ Semiparametrically, 6 unknown.
© Semiparametrically, 0 known.
@ Parametrically: assuming a parametric family.
> Related references in the Euclidean setting:
a Stute, W. and Werner, U. (1991). Nonparametric estimation of
elliptically contoured densities. /n G. Roussas (Ed.), Nonparametric
Functional Estimation and Related Topics, 173—-190.
ﬁ Liebscher, E. (2005). A semiparametric density estimator based on
elliptical distributions. J. Multivariate Anal., 92:205-225.
» The first step is to build an operator that ensures rotasymmetry. &
[ ]
[ ]
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The rotasymmetrizer

Definition (Rotasymmetrizer)

The rotasymmetrizer around 6, Ry, trans-
forms a function f : Q; — R into

/ f (xo,¢) wg—1(d§),
Q

q—1

Rgf(X) =

Wqg—1
with xg.¢ = (x70)0 + (1 — (x79)2)2 By,
> For point x € Qg, the operator averages

out the density along the points sharing the
same colatitude (wrt 0).

> Intuitively: parallel redistribution of Figure: Input ar.1d
probability mass. output of Ry with
6 =(0,0,1). .®
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Properties

Proposition (Rotasymmetrizer properties)
Let be f,f,f: Qq — R directional densities and 6 € Q.

@ /Invariance from different matrices Bg:

/Q 1 f (xo0.¢,1) wg—1(d€) = / f (x0.6.2) wa_1(dE),

q— Qg1
with xg ¢ x = (x70)8 + (1 — (x70)%)2Bg k&, k = 1,2.
@ Linearity: Rg(Mfi + XA2f)(X) = A Refi(x) + AaRgfa(x).
© Density preservation: Rgf is a density.
O Rotasymmetry characterization:
Rof = f < f is rotasymmetric around 6.

@ Particular expression for the vMF density:

Cq(k) exp {HXTGOTM}
Rofotr (x; p, ) = TO)2 TP\2\13 ) @
wa1Coa (5[(1— (TOR)(1 — (TO))]}) o
°
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Rotasymmetric KDE

Definition (Rotasymmetric KDE)

The rotasymmetric KDE (RKDE) is the application of the rotasym-
metrizer to the usual KDE:

Fuo(x) = Rofu(x) = Zth x, X;)

L 1— x5 . X;
with Ly g (x,X;) = Cna(L) L(%) wq_1(dE).
Wg—-1 Ja, ,

» The rotasymmetric von Mises kernel has a closed expression:
Cq(1/h?) exp {xT06X;/h?}
wg-1Co( [(1— (xTO)(1 - (XT0)2)]? /h2)

> The order of the normalizing constant of the kernel is O (h_l).

Lpo(x,X;) =

Eduardo Garcia-Portugués Kernel density estimation with directional data under rotational symmetry 15 /26



Comparison of kernels
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Figure: Kernels for the KDE (upper row) and their RKDE counterparts
(lower), with 8 = (04, 1). The kernels have the same bandwidth.
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Figure: Kernels for the KDE (upper row) and their RKDE counterparts
(lower), with 8 = (04, 1). The kernels have the same bandwidth.
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Comparison of kernels
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Figure: Kernels for the KDE (upper row) and their RKDE counterparts
(lower), with 8 = (04, 1). The kernels have the same bandwidth.
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Comparison of kernels

Figure: Kernels for the KDE (upper row) and their RKDE counterparts
(lower), with 8 = (04, 1). The kernels have the same bandwidth.
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Comparison of kernels

Figure: Kernels for the KDE (upper row) and their RKDE counterparts
(lower), with 8 = (04, 1). The kernels have the same bandwidth.
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Comparison of kernels
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Figure: Kernels for the KDE (upper row) and their RKDE counterparts
(lower), with 8 = (04, 1). The kernels have the same bandwidth.
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Comparison of kernels

w2
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Figure: Kernels for the KDE (upper row) and their RKDE counterparts
(lower), with 8 = (04, 1). The kernels have the same bandwidth.
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Comparison of kernels
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Figure: Kernels for the KDE (upper row) and their RKDE counterparts
(lower), with 8 = (04, 1). The kernels have the same bandwidth.
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Comparison of kernels

Figure: Kernels for the KDE (upper row) and their RKDE counterparts
(lower), with 8 = (04, 1). The kernels have the same bandwidth.

@)

©

Eduardo Garcia-Portugués Kernel density estimation with directional data under rotational symmetry 16 / 26



Connections with KDE in [—1,1]

> The kernels of the RKDE only depend on the projected sample
T, =X/0,i=1,... n, and the projected point t = x"6.

» RKDE is equivalent to KDE on the projected sample in [—1, 1] with
bounded kernels adapted to capture the possible spikes of £*.

» Boundary bias is O (h?) without any corrections.

] —
— RKDE
- - Kernel

-1.0 -05 0.0 0.5 1.0 @
Figure: KDE of f* with g(t) = Cq(k)exp{xt}, k =1and g = 1. LN
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Connections with KDE in [—1,1]

> The kernels of the RKDE only depend on the projected sample
T, =X/0,i=1,... n, and the projected point t = x"6.

» RKDE is equivalent to KDE on the projected sample in [—1, 1] with
bounded kernels adapted to capture the possible spikes of £*.

» Boundary bias is O (h?) without any corrections.

] —
— RKDE
- - Kernel

-1.0 -05 0.0 0.5 1.0 @
Figure: KDE of f* with g(t) = Cq(k)exp{xt}, k=1 and g =2. LN

Eduardo Garcia-Portugués Kernel density estimation with directional data under rotational symmetry 17 /26



Connections with KDE in [—1,1]

> The kernels of the RKDE only depend on the projected sample
T, =X/0,i=1,... n, and the projected point t = x"6.

» RKDE is equivalent to KDE on the projected sample in [—1, 1] with
bounded kernels adapted to capture the possible spikes of £*.

» Boundary bias is O (h?) without any corrections.

] —
— RKDE
- - Kernel

-1.0 -0.5 0.0 0.5 1.0

Figure: KDE of * with g(t) = C4(k)exp {xt}, K =1 and g = 3. LN
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Connections with KDE in [—1,1]

> The kernels of the RKDE only depend on the projected sample
T, =X/0,i=1,... n, and the projected point t = x"6.

» RKDE is equivalent to KDE on the projected sample in [—1, 1] with
bounded kernels adapted to capture the possible spikes of £*.

» Boundary bias is O (h?) without any corrections.

] —
— RKDE
- - Kernel

o - AN
T T 1 (- 1 ‘\H 1 L1l L1 \‘\ L1

-1.0 -0.5 0.0 0.5 1.0

Figure: KDE of f* with g(t) = Cq(k)exp{xt}, Kk =1 and g = 10. LN
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Connections with KDE in [—1,1]

> The kernels of the RKDE only depend on the projected sample
T, =X/0,i=1,... n, and the projected point t = x"6.

» RKDE is equivalent to KDE on the projected sample in [—1, 1] with
bounded kernels adapted to capture the possible spikes of £*.

» Boundary bias is O (h?) without any corrections.

] —
— RKDE
- - Kernel

o -
T T T
T T T T T

-1.0 -0.5 0.0 0.5 1.0

Figure: KDE of f* with g(t) = C4(k)exp {xt}, k=1 and g =100. @

Eduardo Garcia-Portugués Kernel density estimation with directional data under rotational symmetry 17 /26



Bias of the RKDE

» Assumptions:

Al f is extended from Q, to RI™\ {0} by f (x) = £ (x/||x||). f is
twice continuously differentiable with Hessian Hf(x).

A2 L is a continuous and bounded function L : [0, 00) — [0, c0) with
exponential decay: L(r) < Me™", M, o > 0.

A3 The sequence h = h, satisfies h — 0 and nh — oo.

A4 The sequence h = h, satisfies h — 0 and nh? — oo.

> A4 is required for consistency at x = +6. Of course, A4 —> A3.

Proposition (Bias, 6 known)
Under A1-A3 and uniformly in x € €q,

[f,,g(x)] — Rof(x) + C(l ) tr [HRoF ()] 12 + 0 (H?).

If rotasymmetry holds, then Rgf = f and the bias is KDE's one.
[ ]
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Variance

Proposition (Variance, 6 known)
Under A1-A2, A3 if (x"0)? < 1 and A4 otherwise,

Rg f(x)

Var [?h,e(x)} = CXrG,q,L(h)T(l +o(1) - M

uniformly in x € g, where

2 —2
A‘I(L ))‘Q(L) , (XT0)2 — 17 q 2 17
ha
A (L) (L)
CxTG,q,L(h) = Mv (XT0)2 < 17 q= 17
2h
Ag—1(L)*Ag(L) 2
q 1( ) ‘7( ) —, (XT0)2<1,qZ2
we1 (1 — (xTO))? h
» The variance increases when g — 00 since wq—1 — 0! @
o °
Eduardo Garcia-Portugués Kernel density estimation with directional data under rotational symmetry

19 /26



Spherical area surface
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Dimension

Figure: Spherical surface wq = QF%I/F(%H)

> The area of {2, tends to zero, but not monotonically.

» Weird maximum at dimension g = 6.

©

> [—1,1]9 touches Qg in 29 points, yet its area tends to infinity. P
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Asymptotic normality

Corollary (Pointwise asymptotic normality, 6 known)
Under A1-A2, A3 if (x"0)? < 1 and A4 otherwise,

a, (?h,g(x) — f(x)) 45 N (Rof(x) — £(x), Cere.q.0(1))

where a, = v/nh if (x70)? < 1 and a, = V/nhd otherwise.

Concent KDE RKDE RKDE
P (v'/x rotasym.) (v rotasym.) (x rotasym.)
Bias | o (r) \ o (K) | O(Rof(x) — f(x))
Variance ‘ O ((nhq)*l) ‘ O ((nh)*l) ‘ ((nh) 1)
Optimal _ 4 _4
AMISE o(n ™) ‘ O(n7%) ‘ J(Rof = £7?)
Table: Summary of the KDE and RKDE key orders. P
[ ]
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Properties with unknown 6

» Assumption:
A5 Bis a \/n-consistent estimator: 0-0= Op(n_%).
» Examples:
> If g is strictly monotone, 8 = M satisfies A5.
> If g is symmetric wrt 0 and strictly monotone in [0, 1], then the first
eigenvector of % 27:1 X,-X,-T satisfies A5.
» Bias and variance: under A1-A2, A3 or A4 and A5,

E [?h,é(x)} = Rof(x) + ch(’L)tr [HRof(x)]| I + 0 (h) + O(n"7),

Var [£,5(0)] = G () R":(") (14 0(1)) — M.
> Asymptotic normality: under A1-Ab5,
an (Fo(x) = £(x)) =5 N (Rof(x) = F(x), Gura (1)) o
Eduardo Garcia-Portugués Kernel density estimation with directional data under rotational symmetry )
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© Simulation study
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Simulation study

Goal:

» Compare for a grid of bandwidths h the performance of the
estimators.

Settings:
» Estimators: KDE, RKDE with 8 and & (directional mean). All with
von Mises kernel.

> Error measurement: log of the Mean Integrated Squared Error
(MISE):

log MISE = log E l /Q (F(x) = F(x))? wq(dx)

q

> Target density: vMF((04,1),5). Dimensions: g =1,2,3,4,5,6.

» Sample size: n = 100. Monte Carlo replicates: M = 1000. .@
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Comparison with KDE

Figure: Performance of the three kernel estimators with g = 1 (left) and
q = 2 (right), with n = 100.

Ratios optimal MISEs

KDE/RKDE, 6
KDE/RKDE, 6

1.796 2.999 4.065 5.643 5871 8.019 @
1.280 2.014 2537 3.035 3.207 3.467 )
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Comparison with KDE

Figure: Performance of the three kernel estimators with g = 3 (left) and
q = 4 (right), with n = 100.

Ratios optimal MISEs

KDE/RKDE, 6
KDE/RKDE, 6

1.796 2.999 4.065 5.643 5871 8.019 @
1.280 2.014 2537 3.035 3.207 3.467 )

Eduardo Garcia-Portugués

Kernel density estimation with directional data under rotational symmetry 25 / 26



Comparison with KDE

Figure: Performance of the three kernel estimators with g = 5 (left) and
q = 6 (right), with n = 100.

Ratios optimal MISEs

KDE/RKDE, 6
KDE/RKDE, 6

1.796 2.999 4.065 5.643 5871 8.019 @
1.280 2.014 2537 3.035 3.207 3.467 )
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Wrapping up

We have seen that. ..
@ The rotasymmetrizer enforces rotasymmetry naturally.
@ The RKDE has the same bias as the KDE but lower variance.
© The variance still depends on g and increases if g — co.

O Improvements on the MISE are notable in practise.

©
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Appendix



Empirical variance

x'6=0 x'0=05
— KDE — KDE
— RKDE, 6 — RKDE, 6
) S 4 ) 9 F\\k’\k-m‘
T T T T T T T T T T
02 04 06 08 10 02 04 06 08 10
h h
Figure: Log-variances of the KDE and RKDE at x such that x"@ =0
(left) and x™@ = 0.5 (right), for a grid of bandwidths h and dimension
9=1 &
[ ]
°
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Empirical variance

x'6=0 x'0=05
— KDE — KDE
— RKDE, 6 — RKDE, 6
—
T T T T T T T T T T
02 04 06 08 10 02 04 06 08 10
h h
Figure: Log-variances of the KDE and RKDE at x such that x"@ =0
(left) and x™@ = 0.5 (right), for a grid of bandwidths h and dimension
0=2 &
[ ]
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Empirical variance

x'6=0 x'0=05
— KDE — KDE
— RKDE, 6 — RKDE, 6
T T T T T T T T T T
02 04 06 08 10 02 04 06 08 10
h h
Figure: Log-variances of the KDE and RKDE at x such that x"@ =0
(left) and x™@ = 0.5 (right), for a grid of bandwidths h and dimension
9=10 &
[ ]
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Empirical variance

x'9=0 x'9=05

—— KDE
—— RKDE, 8

log(var)
-10
log(var)

-20

T T T T T T T T T T
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

h h

Figure: Log-variances of the KDE and RKDE at x such that x"@ =0
(left) and x™@ = 0.5 (right), for a grid of bandwidths h and dimension

q = 20.
9
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Bandwidth selection

>

Plug-in rules are possible, but more complex than in the usual KDE.

v

Cross-validation rules apply as expected:

(2 )
hov = arg min l:n Z fro(Xi) — /Q #h.0(x)° wq(dx)],

i=1 q

h — | ?_i X;i).
LCV argrpfé(Z og fy 4(X)

i=1

v

The integral is one dimensional:

1 n 2
[ a0 etan =een [ (T3 2650.70) 0 e
a -1 i=1

If @ is unknown, then we can opt for:

@ Plug-in a consistent estimate & (sample mean if g is monotonic).
@ Joint optimization of the LCV loss, for example with

v

(6, h);, oy = arg max Z log f, ¢(X). .@
0cQ, i=1 °

Eduardo Garcia-Portugués Kernel density estimation with directional data under rotational symmetry 2 /26



LCV bandwidth comparison

g=1 q=2
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Figure: Distribution of the ISEs for the estimators KDE(hLcv),
RKDE(8, hr.cv), RKDE(, hcv) and RKDE((8, h)rcv).
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Hints on the estimation of 6

> The estimators for 8 are based on the eigenvector of the outer
matrix that has multiplicity one:

1 1
E[xxT] = {/ £2F*(t) dt x 007 + % <1 f/ £2F*(t) dt> X (lgr1 — eaT)} )
—1 —1

> Problems if all the eigenvalues are similar!

» New estimator based on the characterization

- . Bg X R
{Xi}._, is rotasymmetric <= { —— is uniform in Q.
VI-(X70y J
» The estimator minimizes discrepancy wrt uniformity, measured by
an statistic T, (consistent against all alternatives!).

BJ X, B, X, )
V1I- (X702 T\ /1- (X762’

> For example, Ajne's statistic:

5 _ in T,
0 argé‘glf?q <

n 1 1 T i
To(Y Y):f——g cos (Y, Y;) "
n 17 R n .
4 pr £~ r ®
i<j L
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Applications in testing

» The RKDE can be employed for nonparametric testing:

@ Test for rotational symmetry comparing KDE and RKDE:

T, = / (%5 (0) — B () o).

q

@ Goodness-of-fit test for parametric models under rotasymmetry,
ie testingof Ho: f € Fa ={fA : XA €A}

Ro= [ () = Lot (0 ().

Expected to be more powerful (under rotasymmetry) than:

@ Boente, G., Rodriguez, D. and Gonzalez-Manteiga, W. (2014).
Goodness-of-fit test for directional data. Scand. J. Stat.,
41:259-275.

» Resampling strategy: using the tangent-normal decomposition. @
[ ]
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