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Introduction

I Directional data are vectors whose
support is the hypersphere

Ωq =
{
x ∈ Rq+1 : ||x|| = 1

}
.

I Particular cases are the circle
(q = 1) and the sphere (q = 2).

I Statistical methods must account
for the special nature of directional
data.

I Present in different applied fields:
corner stone in protein modelling.
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Figure: Circular von Mises density.
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Introduction

I Directional data are vectors whose
support is the hypersphere

Ωq =
{
x ∈ Rq+1 : ||x|| = 1

}
.

I Particular cases are the circle
(q = 1) and the sphere (q = 2).
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Figure: Spherical von Mises density.
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Von Mises-Fisher distribution
I The most well known directional distribution is the von Mises-Fisher

(vMF), with density:

fvMF(x; µ, κ) = Cq(κ) exp
{
κxT µ

}
, Cq(κ) = κ

q−1
2

(2π) q+1
2 I q−1

2
(κ)

parametrized by a mean µ ∈ Ωq and a concentration κ ≥ 0.
I Density wrt the Lebesgue measure ωq in Ωq. ωq denotes also the

area surface of Ωq:

ωq ≡ ωq(Ωq) = 2π
q+1
2
/

Γ
(q + 1

2

)
.

I Gaussian analogue (isotropic):
1 Same MLE characterization property.
2 If X ∼ Nq+1

(
µ, σ2Iq+1

)
, with µ ∈ Rq+1\{0} and σ2 > 0, then

Y =
(
X
∣∣ ||X|| = 1

)
∼ vM

(
µ

||µ|| ,
||µ||
σ2

)
.
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Rotasymmetry I
I A recurrent assumption about a directional rv X is rotational

symmetry (or rotasymmetry) about some direction θθθ ∈ Ωq.
I In the circular case, rotasymmetry is reflective symmetry, a

feature appearing in most of the distributions.
I In the high-dimensional situation, rotasymmetry is behind many

celebrated distributions such as the vMF.
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Figure: Rotasymmetry in the circular and spherical cases.
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Rotasymmetry II

I It is a building block in numerous contributions: inference,
simulation, descriptive statistics.

Saw, J. G. (1978). A family of distributions on the m-sphere and some
hypothesis tests. Biometrika, 65:69–73.

Bingham, C. and Mardia, K. V. (1978). A small circle distribution on
the sphere Biometrika, 65:379–389.

Wood, A. T. A (1994). Simulation of the von Mises Fisher distribution.
Commun. Stat. Simulat., 23:157–164.

Ley, C., Swan, Y., Thiam, B. and Verdebout, T. (2013). Optimal
R-estimation of a spherical location. Statist. Sinica, 23:305–332.

Ley, C., Sabbah, C. and Verdebout, T. (2014). A new concept of
quantiles for directional data and the angular Mahalanobis depth.
Electron. J. Stat., 8:795–816.
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Rotasymmetry III

Proposition (Rotasymmetry characterization)
Let X a directional rv with density f . These statements are equivalent:

1 X d= OX, where O = θθT +
∑q

i=1 bibT
i is a rotation matrix on

Rq+1 that fixes θ ∈ Ωq.

2 f (x) = g
(
xT θ

)
, ∀x ∈ Ωq, where g : [−1, 1] −→ R+ is a link

such that f ∗(t) = ωq−1g(t)(1− t2)
q
2−1 is a density in [−1, 1].

I Rotasymmetry is related with the tangent-normal decomposition:

x = tθ + (1− t2) 1
2Bθξ, ωq(dx) = (1− t2)

q
2−1 dt ωq−1(dξ),

with t = xT θ ∈ [−1, 1], ξ ∈ Ωq−1 and Bθ = (b1, . . . ,bq)(q+1)×q
such that BT

θ Bθ = Iq and BθBT
θ = Iq+1 − θθT .

I No monotonicity required in g , axial variables are covered as well.
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KDE with directional data
I For a sample X1, . . . ,Xn ∼ f , the Kernel Density Estimator (KDE)

for directional data is

f̂h(x) = ch,q(L)
n

n∑
i=1

L
(
1− xTXi

h2

)
= 1

n

n∑
i=1

Lh (x,Xi ) , x ∈ Ωq.

Bai, Z. D., Rao, C. R. and Zhao, L. C. (1988). Kernel estimators of
density function of directional data. J. Multivariate Anal., 27:24–39.

I Kernel: usually L(r) = e−r , known as the von Mises kernel. In that
case ch,q(L) = e1/h2Cq(1/h2).

I Normalizing constant ch,q(L)−1 = λq(L)hq(1 + o (1)) with

λq(L) = 2
q
2−1ωq−1

∫ ∞
0

L(r)r
q
2−1 dr .

I “Second moment” of L: bq(L) =
∫∞
0 L(r)r

q
2 dr

/ ∫∞
0 L(r)r

q
2−1 dr .

I Bandwidth: key parameter that controls the smoothness.
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KDE construction: spherical case

Figure: Left: KDE with n = 1. Right: true density.
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KDE construction: spherical case

Figure: Left: KDE with n = 2. Right: true density.
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KDE construction: spherical case

Figure: Left: KDE with n = 3. Right: true density.
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KDE construction: spherical case

Figure: Left: KDE with n = 5. Right: true density.
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KDE construction: spherical case

Figure: Left: KDE with n = 10. Right: true density.
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KDE construction: spherical case

Figure: Left: KDE with n = 20. Right: true density.
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Density estimation under rotasymmetry

I Suppose that X is rotasymmetric with density f .
I Goal: estimate semiparametrically f under rotasymmetry.
I Estimation approaches, sorted from weaker to stronger assumptions:

1 Nonparametrically: KDE for directional data.
2 Semiparametrically, θ unknown.
3 Semiparametrically, θ known.
4 Parametrically: assuming a parametric family.

I Related references in the Euclidean setting:

Stute, W. and Werner, U. (1991). Nonparametric estimation of
elliptically contoured densities. In G. Roussas (Ed.), Nonparametric
Functional Estimation and Related Topics, 173–190.

Liebscher, E. (2005). A semiparametric density estimator based on
elliptical distributions. J. Multivariate Anal., 92:205–225.

I The first step is to build an operator that ensures rotasymmetry.
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The rotasymmetrizer

Definition (Rotasymmetrizer)
The rotasymmetrizer around θ, Rθ, trans-
forms a function f : Ωq −→ R into

Rθf (x) = 1
ωq−1

∫
Ωq−1

f (xθ,ξ) ωq−1(dξ),

with xθ,ξ = (xT θ)θ + (1− (xT θ)2) 1
2Bθξ.

I For point x ∈ Ωq, the operator averages
out the density along the points sharing the
same colatitude (wrt θ).

I Intuitively: parallel redistribution of
probability mass.

Figure: Input and
output of Rθ with
θ = (0, 0, 1).
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Properties

Proposition (Rotasymmetrizer properties)
Let be f , f1, f2 : Ωq −→ R+ directional densities and θ ∈ Ωq.

1 Invariance from different matrices Bθ:∫
Ωq−1

f (xθ,ξ,1) ωq−1(dξ) =
∫

Ωq−1

f (xθ,ξ,2) ωq−1(dξ),

with xθ,ξ,k = (xT θ)θ + (1− (xT θ)2) 1
2Bθ,kξ, k = 1, 2.

2 Linearity: Rθ(λ1f1 + λ2f2)(x) = λ1Rθf1(x) + λ2Rθf2(x).
3 Density preservation: Rθf is a density.
4 Rotasymmetry characterization:

Rθf = f ⇐⇒ f is rotasymmetric around θ.

5 Particular expression for the vMF density:

RθfvMF(x; µ, κ) =
Cq(κ) exp

{
κxT θθT µ

}
ωq−1Cq−1

(
κ [(1− (xT θ)2)(1− (µT θ)2)]

1
2
) .
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Rotasymmetric KDE

Definition (Rotasymmetric KDE)
The rotasymmetric KDE (RKDE) is the application of the rotasym-
metrizer to the usual KDE:

f̂h,θ(x) = Rθ f̂h(x) = 1
n

n∑
i=1

Lh,θ (x,Xi ) ,

with Lh,θ (x,Xi ) = ch,q(L)
ωq−1

∫
Ωq−1

L
(
1− xT

θ,ξXi

h2

)
ωq−1(dξξξ).

I The rotasymmetric von Mises kernel has a closed expression:

Lh,θ(x,Xi ) =
Cq(1/h2) exp

{
xT θθTXi

/
h2
}

ωq−1Cq−1

( [
(1− (xT θ)2)(1− (XT

i θ)2)
] 1

2
/
h2
) .

I The order of the normalizing constant of the kernel is O
(
h−1
)
.
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Comparison of kernels
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Figure: Kernels for the KDE (upper row) and their RKDE counterparts
(lower), with θ = (000q, 1). The kernels have the same bandwidth.
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(lower), with θ = (000q, 1). The kernels have the same bandwidth.

16 / 26
Eduardo García-Portugués Kernel density estimation with directional data under rotational symmetry

N



Comparison of kernels

0

π 2

π

3π 2

0 0.5 1

θ

Xi

0 0.5 1

θ

Xi

Figure: Kernels for the KDE (upper row) and their RKDE counterparts
(lower), with θ = (000q, 1). The kernels have the same bandwidth.

16 / 26
Eduardo García-Portugués Kernel density estimation with directional data under rotational symmetry

N



Comparison of kernels

0

π 2

π

3π 2

0 0.5 1

θ

Xi

0 0.5 1

θ

Xi

Figure: Kernels for the KDE (upper row) and their RKDE counterparts
(lower), with θ = (000q, 1). The kernels have the same bandwidth.

16 / 26
Eduardo García-Portugués Kernel density estimation with directional data under rotational symmetry

N



Comparison of kernels

0

π 2

π

3π 2

0 0.5 1

θ

Xi

0 0.5 1

θ

Xi

Figure: Kernels for the KDE (upper row) and their RKDE counterparts
(lower), with θ = (000q, 1). The kernels have the same bandwidth.

16 / 26
Eduardo García-Portugués Kernel density estimation with directional data under rotational symmetry

N



Comparison of kernels

0

π 2

π

3π 2

0 0.5 1

θ

Xi

0 0.5 1

θ

Xi

Figure: Kernels for the KDE (upper row) and their RKDE counterparts
(lower), with θ = (000q, 1). The kernels have the same bandwidth.

16 / 26
Eduardo García-Portugués Kernel density estimation with directional data under rotational symmetry

N



Comparison of kernels

0

π 2

π

3π 2

0 0.5 1

θ

Xi

0 0.5 1

θ

Xi

Figure: Kernels for the KDE (upper row) and their RKDE counterparts
(lower), with θ = (000q, 1). The kernels have the same bandwidth.

16 / 26
Eduardo García-Portugués Kernel density estimation with directional data under rotational symmetry

N



Comparison of kernels

0

π 2

π

3π 2

0 0.5 1

θ

Xi

0 0.5 1

θ

Xi

Figure: Kernels for the KDE (upper row) and their RKDE counterparts
(lower), with θ = (000q, 1). The kernels have the same bandwidth.

16 / 26
Eduardo García-Portugués Kernel density estimation with directional data under rotational symmetry

N



Connections with KDE in [−1, 1]
I The kernels of the RKDE only depend on the projected sample

Ti = XT
i θ, i = 1, . . . , n, and the projected point t = xT θ.

I RKDE is equivalent to KDE on the projected sample in [−1, 1] with
bounded kernels adapted to capture the possible spikes of f ∗.

I Boundary bias is O
(
h2
)
without any corrections.
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Figure: KDE of f ∗ with g(t) = Cq(κ) exp {κt}, κ = 1 and q = 1.
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Figure: KDE of f ∗ with g(t) = Cq(κ) exp {κt}, κ = 1 and q = 2.
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Connections with KDE in [−1, 1]
I The kernels of the RKDE only depend on the projected sample

Ti = XT
i θ, i = 1, . . . , n, and the projected point t = xT θ.

I RKDE is equivalent to KDE on the projected sample in [−1, 1] with
bounded kernels adapted to capture the possible spikes of f ∗.

I Boundary bias is O
(
h2
)
without any corrections.
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Figure: KDE of f ∗ with g(t) = Cq(κ) exp {κt}, κ = 1 and q = 3.
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Connections with KDE in [−1, 1]
I The kernels of the RKDE only depend on the projected sample

Ti = XT
i θ, i = 1, . . . , n, and the projected point t = xT θ.

I RKDE is equivalent to KDE on the projected sample in [−1, 1] with
bounded kernels adapted to capture the possible spikes of f ∗.

I Boundary bias is O
(
h2
)
without any corrections.
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Figure: KDE of f ∗ with g(t) = Cq(κ) exp {κt}, κ = 1 and q = 10.
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Connections with KDE in [−1, 1]
I The kernels of the RKDE only depend on the projected sample

Ti = XT
i θ, i = 1, . . . , n, and the projected point t = xT θ.

I RKDE is equivalent to KDE on the projected sample in [−1, 1] with
bounded kernels adapted to capture the possible spikes of f ∗.

I Boundary bias is O
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)
without any corrections.
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Figure: KDE of f ∗ with g(t) = Cq(κ) exp {κt}, κ = 1 and q = 100.
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Bias of the RKDE

I Assumptions:
A1 f is extended from Ωq to Rq+1\ {0} by f (x) ≡ f (x/ ||x||). f is

twice continuously differentiable with Hessian Hf (x).
A2 L is a continuous and bounded function L : [0,∞)→ [0,∞) with

exponential decay: L(r) ≤ Me−αr , M, α > 0.
A3 The sequence h = hn satisfies h→ 0 and nh→∞.
A4 The sequence h = hn satisfies h→ 0 and nhq →∞.

I A4 is required for consistency at x = ±θ. Of course, A4 =⇒ A3.

Proposition (Bias, θ known)
Under A1–A3 and uniformly in x ∈ Ωq,

E
[
f̂h,θ(x)

]
= Rθf (x) + bq(L)

q tr [HRθf (x)] h2 + o
(
h2
)
.

If rotasymmetry holds, then Rθf = f and the bias is KDE’s one.
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Variance

Proposition (Variance, θ known)
Under A1–A2, A3 if (xT θ)2 < 1 and A4 otherwise,

Var
[
f̂h,θ(x)

]
= CxT θ,q,L(h)Rθf (x)

n (1 + o (1))− (Rθf (x))2
n

uniformly in x ∈ Ωq, where

CxT θ,q,L(h) =



λq(L2)λq(L)−2

hq , (xT θ)2 = 1, q ≥ 1,

λ1(L2)λ1(L)−2

2h , (xT θ)2 < 1, q = 1,

λq−1(L)2λq(L)−2

ωq−1 (1− (xT θ)2)
1
2 h
, (xT θ)2 < 1, q ≥ 2.

I The variance increases when q →∞ since ωq−1 → 0!
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Spherical area surface
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2
/
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(
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)
.

I The area of Ωq tends to zero, but not monotonically.
I Weird maximum at dimension q = 6.
I [−1, 1]q touches Ωq in 2q points, yet its area tends to infinity.
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Asymptotic normality

Corollary (Pointwise asymptotic normality, θ known)
Under A1–A2, A3 if (xT θ)2 < 1 and A4 otherwise,

an

(
f̂h,θ(x)− f (x)

)
d−→ N

(
Rθf (x)− f (x),CxT θ,q,L(1)

)
,

where an =
√
nh if (xT θ)2 < 1 and an =

√
nhq otherwise.

Concept KDE RKDE RKDE
(X/× rotasym.) (X rotasym.) (× rotasym.)

Bias O
(

h2
)

O
(

h2
)

O (Rθf (x)− f (x))

Variance O
(

(nhq)−1
)

O
(

(nh)−1
)

O
(

(nh)−1
)

Optimal
AMISE O

(
n−

4
4+q
)

O
(

n−
4
5
)

O
(∫

(Rθf − f )2
)

Table: Summary of the KDE and RKDE key orders.
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Properties with unknown θ

I Assumption:
A5 θ̂ is a

√
n-consistent estimator: θ̂ − θ = OP

(
n− 1

2
)
.

I Examples:

I If g is strictly monotone, θ̂ =
∑n

i=1
Xi∣∣∣∣∑n

i=1
Xi

∣∣∣∣ satisfies A5.
I If g is symmetric wrt 0 and strictly monotone in [0, 1], then the first

eigenvector of 1
n
∑n

i=1 XiXT
i satisfies A5.

I Bias and variance: under A1–A2, A3 or A4 and A5,

E
[
f̂h,θ̂(x)

]
=Rθf (x) + bq(L)

q tr [HRθf (x)] h2 + o
(
h2
)

+O
(
n− 1

2
)
,

Var
[
f̂h,θ̂(x)

]
=CxT θ,q,L(h)Rθf (x)

n (1 + o (1))− (Rθf (x))2
n .

I Asymptotic normality: under A1–A5,

an

(
f̂h,θ̂(x)− f (x)

)
d−→ N

(
Rθf (x)− f (x),CxT θ,q,L(1)

)
.
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Outline

1 Introduction
Rotasymmetry
KDE with directional data

2 Density estimation under rotasymmetry
The rotasymmetrizer
Rotasymmetric KDE

3 Simulation study
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Simulation study

Goal:
I Compare for a grid of bandwidths h the performance of the

estimators.

Settings:
I Estimators: KDE, RKDE with θ and θ̂ (directional mean). All with

von Mises kernel.
I Error measurement: log of the Mean Integrated Squared Error

(MISE):

logMISE = logE
[∫

Ωq

(f̂ (x)− f (x))2 ωq(dx)
]
.

I Target density: vMF((0q, 1), 5). Dimensions: q = 1, 2, 3, 4, 5, 6.
I Sample size: n = 100. Monte Carlo replicates: M = 1000.
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Comparison with KDE
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Figure: Performance of the three kernel estimators with q = 1 (left) and
q = 2 (right), with n = 100.

Ratios optimal MISEs q = 1 q = 2 q = 3 q = 4 q = 5 q = 6

KDE/RKDE, θ 1.796 2.999 4.065 5.643 5.871 8.019
KDE/RKDE, θ̂ 1.289 2.014 2.537 3.035 3.207 3.467
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Comparison with KDE
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Figure: Performance of the three kernel estimators with q = 3 (left) and
q = 4 (right), with n = 100.

Ratios optimal MISEs q = 1 q = 2 q = 3 q = 4 q = 5 q = 6

KDE/RKDE, θ 1.796 2.999 4.065 5.643 5.871 8.019
KDE/RKDE, θ̂ 1.289 2.014 2.537 3.035 3.207 3.467
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Comparison with KDE
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Figure: Performance of the three kernel estimators with q = 5 (left) and
q = 6 (right), with n = 100.

Ratios optimal MISEs q = 1 q = 2 q = 3 q = 4 q = 5 q = 6

KDE/RKDE, θ 1.796 2.999 4.065 5.643 5.871 8.019
KDE/RKDE, θ̂ 1.289 2.014 2.537 3.035 3.207 3.467
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Wrapping up

We have seen that. . .
1 The rotasymmetrizer enforces rotasymmetry naturally.

2 The RKDE has the same bias as the KDE but lower variance.

3 The variance still depends on q and increases if q →∞.

4 Improvements on the MISE are notable in practise.
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Appendix



Empirical variance
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Figure: Log-variances of the KDE and RKDE at x such that xT θ = 0
(left) and xT θ = 0.5 (right), for a grid of bandwidths h and dimension
q = 1.
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Empirical variance
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Figure: Log-variances of the KDE and RKDE at x such that xT θ = 0
(left) and xT θ = 0.5 (right), for a grid of bandwidths h and dimension
q = 2.
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Empirical variance
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Figure: Log-variances of the KDE and RKDE at x such that xT θ = 0
(left) and xT θ = 0.5 (right), for a grid of bandwidths h and dimension
q = 10.
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Empirical variance
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Figure: Log-variances of the KDE and RKDE at x such that xT θ = 0
(left) and xT θ = 0.5 (right), for a grid of bandwidths h and dimension
q = 20.
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Bandwidth selection
I Plug-in rules are possible, but more complex than in the usual KDE.
I Cross-validation rules apply as expected:

hCV = argmin
h>0

[
2
n

n∑
i=1

f̂ −i
h,θ(Xi )−

∫
Ωq

f̂h,θ(x)2 ωq(dx)
]
,

hLCV = argmax
h>0

n∑
i=1

log f̂ −i
h,θ(Xi ).

I The integral is one dimensional:∫
Ωq

f̂h,θ(x)2 ωq(dx) = ωq−1

∫ 1

−1

(
1
n

n∑
i=1

L∗h (t,Ti )
)2

(1− t2)
q
2−1 dt.

I If θ is unknown, then we can opt for:
1 Plug-in a consistent estimate θ̂ (sample mean if g is monotonic).
2 Joint optimization of the LCV loss, for example with

(θ, h)LCV = arg max
h>0

θ∈Ωq

n∑
i=1

log f̂ −i
h,θ(Xi ).
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LCV bandwidth comparison
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Figure: Distribution of the ISEs for the estimators KDE(hLCV),
RKDE(θ, hLCV), RKDE(θ̂, hLCV) and RKDE((θ, h)LCV).
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Hints on the estimation of θ

I The estimators for θ are based on the eigenvector of the outer
matrix that has multiplicity one:

E
[
XXT

]
=
{∫ 1

−1
t2f ∗(t) dt × θθT +

1
q

(
1−
∫ 1

−1
t2f ∗(t) dt

)
× (Iq+1 − θθT )

}
.

I Problems if all the eigenvalues are similar!
I New estimator based on the characterization

{Xi}n
i=1 is rotasymmetric ⇐⇒

{
BT

θ Xi√
1− (XT

i θ)2

}n

i=1
is uniform in Ωq.

I The estimator minimizes discrepancy wrt uniformity, measured by
an statistic Tn (consistent against all alternatives!).

θ̂ = arg min
θ∈Ωq

Tn

(
BT

θ X1√
1− (XT

1 θ)2
, . . . ,

BT
θ Xn√

1− (XT
n θ)2

)
,

I For example, Ajne’s statistic:

Tn(Y1, . . . ,Yn) = n
4 −

1
nπ
∑
i<j

cos−1(YT
i Yj).
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Applications in testing

I The RKDE can be employed for nonparametric testing:
1 Test for rotational symmetry comparing KDE and RKDE:

Tn =
∫

Ωq

(f̂h,θ̂(x)− f̂h(x))2 ωq(dx).

2 Goodness-of-fit test for parametric models under rotasymmetry,
i.e. testing of H0 : f ∈ FΛ = {fλ : λ ∈ Λ}:

Rn =
∫

Ωq

(f̂h,θ̂(x)− Lhfλ̂(x))2 ωq(dx).

Expected to be more powerful (under rotasymmetry) than:

Boente, G., Rodríguez, D. and González-Manteiga, W. (2014).
Goodness-of-fit test for directional data. Scand. J. Stat.,
41:259–275.

I Resampling strategy: using the tangent-normal decomposition.
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