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1. Modeling power law (heavy) tails via regular variation

•Regularly varying function: f(x) = xρL(x), x > 0, ρ ∈ R,

L slowly varying. Bingham, Goldie, Teugels (1987)

•Regularly varying random variable: For some α > 0,

P(X > x) ∼ p
L(x)

xα
and P(X ≤ −x) ∼ q

L(x)

xα
.(1.1)

• (1.1) appears as domain of attraction condition in limit theory

for sums, maxima,... for sequences of iid random variables (Xt).
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• Example. (Xt) iid Pareto:

P(Xt > x) = x−α , x > 1, α > 0 ,

and

Mn = max(X1, . . . , Xn) .

Then

P
(

Mn/n
1/α ≤ x

)

=
(

1 − x−α

n

)n

→ e−x
−α
, x > 0 .

• The limit is the Fréchet distribution.

• It is one of the three max-stable distributions; they are the

only non-degenerate limit distributions for maxima of an iid

sequence.
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• Example. The Cauchy distribution has density and

characteristic function, respectively,

fX(x) =
1

π(1 + |x|2)
and ϕX(t) = e−|t| .

•A Cauchy random variable X is regularly varying with index 1.

• IID copies (Xt) of X satisfy

n−1Sn = n−1(X1 + · · · +Xn)
d
= X1 , n ≥ 1 .

• The Cauchy distribution is one of the infinite variance

sum-stable limit distributions for iid random variables.



5

• The regular variation condition

P(X > x) ∼ p
L(x)

xα
and P(X ≤ −x) ∼ q

L(x)

xα
.

is used as modeling assumption in applied probability,

– in insurance mathematics,

– queuing (e.g. data networks),

– (financial) time series analysis,

– climate and weather research,

– seismology, . . .
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Figure 1. Time series of transmission durations of Ethernet files.
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Figure 2. Danish fire insurance data.
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Figure 3. Plot of 9558 S&P500 daily log-returns from January 2, 1953, to December 31, 1990. The
year marks indicate the beginning of the calendar year.
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Figure 4. Hill estimates of the upper and lower tail indices of log-returns for 420 univariate time series
from S&P 500.
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Figure 5. Scatterplot of 5 minute foreign exchange rate log-returns, USD-DEM against USD-FRF.



11

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06

0
e

+
0

0
1

e
+

0
6

2
e

+
0

6
3

e
+

0
6

4
e

+
0

6
5

e
+

0
6

Teletraffic file sizes

X_(t−1)

X
_

t

Figure 6. Scatterplot of file sizes of teletraffic data.
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2. Multivariate regular variation

•An R
d-valued random vector X = (X1, . . . , Xd) is regularly

varying if there exists a non-null Radon measure νd on

R
d
0 = R

d\{0}2 such that Resnick (1987,2007)

µx(·) =
P(x−1X ∈ ·)
P(|X| > x)

v→ νd(·) , x → ∞ .

• The measure νd determines the extremal dependence structure

of the vector X. It has the scaling property

νd(tA) = t−α νd(A), t > 0, for some α ≥ 0.

• α is the index of regular variation or tail index.

2The measure is finite on sets bounded away from zero.
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•X is regularly varying with index α if and only if there exist a

vector Θ0 with values in the unit sphere of Rd and an

independent Pareto distributed random variable Y0, i.e.,

P(Y0 > t) = t−α, t > 1, such that

( X

|X|
, |X|

)
∣

∣

∣
|X| > x

d→ (Θ0 , Y0) , x → ∞ .

• The radial and the spherical parts of X are asymptotically

independent for large values of |X|.

• This property allows one to estimate probabilities of extreme

events for which no or only a few data are available.
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•Regular variation is preserved under homogeneous continuous

mappings f : Rk → R
d.

• For example,

P(x−1(X1 + · · · +Xk) ∈ ·)
P(|X| > x)

v→ νk({x ∈ R
k : x1 + · · · + xk ∈ ·}) .

Sums of regularly varying random variables are regularly

varying (possibly degenerate).

•Regular variation can be extended in a straightforward way to

abstract spaces.
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3. Regularly varying stationary sequences

•An R
d-valued strictly stationary sequence (Xt) is regularly

varying with index α > 0 if its finite-dimensional distributions

are regularly varying with index α. Davis, Hsing (1995)

• This means: for every k ≥ 1, there exists a non-null Radon

measure µk on (Rd0)
k such that

P(x−1(X1, . . . ,Xk) ∈ ·)
P(|X0| > x)

v→ µk(·) .
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•Alternatively, Basrak, Segers (2009) for α > 0, k ≥ 0, there exists a

sequence (Yt)t≥0 such that

P(x−1(X0, . . . ,Xk) ∈ · | |X0| > x)
w→ P((Y0, . . . ,Yk) ∈ ·) ,

• |Y0| is independent of (Y0, . . . ,Yk)/|Y0|

• and P(|Y0| > y) = y−α, y > 1.

• Example. Assume (Xt) iid. Then Yt = 0 for t ≥ 1.

• This means: If |X0| is large, |X1|, . . . , |Xk| cannot be large.

Extremes appear close to the axes.
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• Example. Consider the stochastic recurrence equation

Xt = AtXt−1 +Bt for iid (At, Bt), At, Bt > 0.(3.2)

• If there exists α > 0 such that E[Aα
1 ] = 1 and E[Bα

1 ] < ∞ then

P(X1 > x) ∼ c x−α x → ∞ ,

and (Xt) is regularly varying with index α. Kesten (1973), Goldie (1991)

• Then

x−1(X0, . . . , Xk)
∣

∣

∣
X0 > x

d→ Y0 (1, A1, A1A2 , . . . , A1 · · ·Ak)

• For example, the extremogram of (Xt): as x → ∞,

P(Xk > x | X0 > x) → P(Y0A1 · · ·Ak > 1) = E[1 ∧ (A1 · · ·Ak)
α] .
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• Example. Consider a GARCH(1, 1) process Bollerslev (1986)

Xt = σtZt , (Zt) iid mean-zero, unit variance ,

σ2
t = α1X

2
t−1 + β1 σ

2
t−1 + α0 = (α1Z

2
t−1 + β1)σ

2
t−1 + α0 .

• The GARCH(1, 1) is a major model for returns (relative

changes in a given time unit) of speculative prices.

• The process (σ2
t ) satisfies (3.2) with At = α1Z

2
t−1 + β1 and

Bt = α0.

• The volatility process (σt) is regularly varying and the process

(Xt) inherits this property.
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• This is by virtue of

Breiman’s lemma:

for non-negative independent random variables ξ and η with

P(ξ > x) ∼ c x−αL(x) and E[ηα+δ] < ∞,

P(ξ η > x) ∼ E[ηα] P(ξ > x) , x → ∞ .

• For the GARCH(1, 1),

P(Xt > x) = P(σtZt > x)

∼ E[(Z+
t )

α] P(σt > x)

∼ E[(Z+
t )

α] c x−α .
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Figure 7. Top: Stochastic volatility processXt = σtZt for iid student (Zt) with 4 degrees of freedom,
Gaussian ARMA(1,1) process log σt = 0.5 log σt−1+0.3ηt−1+ηt. Bottom: GARCH(1, 1) process
Xt = (0.0001 + 0.1X2

t−1 + 0.9σ2
t−1)

0.5Zt for iid standard normal (Zt).
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Examples of regularly varying stationary sequences.

• IID sequence (Zt) with regularly varying Z0.

• Linear processes e.g. ARMA processes with iid regularly

varying noise (Zt). Rootzén (1978,1983), Davis, Resnick (1985)

• Solutions to stochastic recurrence equation: Xt = AtXt−1 +Bt

Kesten (1973), Goldie (1991)

•GARCH process. Bollerslev (1986), M., Stărică (2000), Davis, M. (1998), Basrak,

Davis, M. (2000,2002)

• The simple stochastic volatility model with iid regularly

varying noise. Davis, M. (2001)
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• Infinite variance α-stable stationary processes are regularly

varying with index α ∈ (0, 2). Samorodnitsky, Taqqu (1994), Rosiński

(1995,2000)

•Max-stable stationary processes with Fréchet (Φα) marginals

are regularly varying with index α > 0. de Haan (1984), Stoev (2008),

Kabluchko (2009)
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Figure 8. Sample of a Brown-Resnick random field on [0, 5]2 with variogram γ(t) = |t|α/2 for α = 1/2, α = 1, α = 3/2
from left to right, respectively. The grid mesh is 0.1.



24

4. Limit theory for regularly varying sequences

•Asymptotic theory for sums

Sn = X1 + · · · +Xn,

sample covariances, sample autocorrelations with α-stable limit

for α < 2, or α/2-limit for α < 4, periodogram,. . . : Rootzén (1983),

Davis, Resnick (1985,1986), Jakubowski (1993,1997), Davis, Hsing (1995), M., Küppelberg

(1992-1995), Buraczewski, Damek, M., Jakubowski, Wintenberger, Basrak, Segers

(2005-2015), in particular Markov chains
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• Cluster Poisson limits for point processes

Nn =
n
∑

t=1

εXt/an
d→ N =

∞
∑

k=1

∞
∑

i=1

ε
Γ
−1/α
i Qik

where P(|Xt| > an) ∼ n−1, Γi = E1 + · · · + Ei, (Ei) iid

exponential, (Qik)k≥1 iid, supk |Qik| ≤ 1 a.s.

• Limit theory for maxima and order statistics and continuous

functionals acting on them, extremal index. Davis, Resnick (1985,1986),

Davis, Hsing (1995), Basrak, Davis, M. (2000-2002), Basrak, Segers (2009), M.,

Wintenberger (2013-2015)
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• Extremogram. An autocorrelaton function for serial extremal

dependence. Davis, M., Zhao (2009-)

• For an R
d-valued strictly stationary regularly varying sequence

(Xt) and a Borel set A bounded away from zero the

extremogram is the limiting function

ρA(h) = lim
x→∞

P(x−1Xh ∈ A | x−1X0 ∈ A)

= lim
x→∞

P(x−1X0 ∈ A , x−1Xh ∈ A)

P(x−1X0 ∈ A)

=
µh+1(A× R

d(h−1)

0 ×A)

µh+1(A× R
dh

0 )
, h ≥ 0 .
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• Since

cov(I(x−1X0 ∈ A), I(x−1Xh ∈ A))

P(x−1X0 ∈ A)

= P(x−1Xh ∈ A | x−1X0 ∈ A) − P(x−1X0 ∈ A)

→ ρA(h) , h ≥ 0 ,

• (ρA(h)) is the autocorrelation function of a stationary process.

•One can use the notions of classical time series analysis to

describe the extremal dependence structure in a strictly

stationary sequence.
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Figure 9. Five-minute returns of USD-DEM and USD-FRF foreign exchange rates. Left: (Cross-)
extremograms of the original data. Right: (Cross-) extremograms of the residuals after an AR-
GARCH fit.
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• Large deviations. Approximations to rare event probabilities

such as

P(b−1
n Sn ∈ A) → 0

for sets A bounded away from zero. A.V. and S.V. Nagaev (1960-1979),

Hult, Lindskog, M., Samorodnitsky (1998-2007), Bartkiewicz, Damek, M., Wintenberger

(2007-)
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• Tail bounds for subadditive functionals acting on a random

walk with negative drift (Sn − µn), where E[X0] = 0, α > 1

and µ > 0. For example, the ruin probability

ψ(u) = P
(

sup
n≥1

(Sn − µn) > u
)

, u → ∞ .

• The classical ruin bound for iid (Xt) Embrechts, Veraverbeke (1982)

ψ(u) ∼ constu P(X0 > u) , u → ∞ .

M., Samorodnitsky (1998-2002), with Hult, Lindskog for multivariate random walks (2005),

with Buraczewski, Damek, Wintenberger (2007-) for Markov chains and more general

structures
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5. The principle of a single big jump (heavy-tail heuristics)

• Consider an iid real-valued sequence (Xt) with partial sums

Sn = X1 + · · · +Xn .

•A large value of Sn appears in the most natural way, due to a

single large summand Xt.

•As x → ∞,

P(Sn > x) ∼ P

(

n
⋃

i=1

{Xt > x}
)

∼ P

(

n
⋃

i=1

{Xt > x ,Xj ≤ x , j 6= i}
)

∼
n
∑

i=1

P(Xi > x) .



32

• These heuristics remain valid for classes of heavy-tailed

distributions other than the regularly varying ones, e.g. the

subexponential distributions which are standard distribution in

insurance mathematics and queuing theory.
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6. Large deviations for a regularly varying sequence

• Partial sums of a univariate regularly varying sequence (Xt):

Sn = X1 + · · · +Xn , n ≥ 1 ,

Assume E[X0] = 0 if E[|X0|] < ∞ and P(|X0| > an) ∼ n−1.

• Then the following relation holds for α > 0 and suitable

sequences bn ↑ ∞ A.V. Nagaev (1969), S.V. Nagaev (1979)

lim
n→∞

sup
x≥bn

∣

∣

∣

∣

P(Sn > x)

n P(|X0| > x)
− p

∣

∣

∣

∣

= 0 .

For α ≤ 2, one can choose any (bn) such that bn/an → ∞,

for α > 2, bn >
√
an logn, a > α− 2.
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•A functional (Donsker) version for multivariate regularly

varying summands holds in the iid case and is applied to get

bounds for ruin probabilities. Hult, Lindskog, M., Samorodnitsky (2005)

• For dependent sequences, the limit in Nagaev’s result has to be

adjusted for extreme cluster effects.
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7. Concluding remarks

•Over the last 25 years, a (functional) calculus of regular

variation for stochastic processes, and functionals acting on

them has been developed.

• This calculus has been triggered by problems arising in areas

such as time series analysis, data networks, climate research.

•Regular variation focuses on power laws, but not all heavy-tail

phenomena are due to power law tails.

• The literature on processes with semi-exponential

(subexponential) multivariate tails is relatively sparse and

constitute a widely open field. See e.g. Asmussen, Rojas-Nandayapa

(2008,2015), Foss, Korshunov, Zachary (2013), Tankov (2013)
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• Problems of simulating rare event probabilities, max-stable

processes,. . . and estimation problems for regularly varying

structures are difficult and unsolved.


