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1. MODELING POWER LAW (HEAVY) TAILS VIA REGULAR VARIATION

e Regularly varying function: f(x) = «” L(x), * > 0, p € R,

L SlOle Varying. Bingham, Goldie, Teugels (1987)

e Regularly varying random variable: For some o > 0,

L(:U) L(:U)

(1.1) P(X>x)~p and P(X < —x) ~gq

e (1.1) appears as domain of attraction condition in limit theory

for sums, maxima,... for sequences of iid random variables (X}).



e Example. (X;) iid Pareto:

P(X; >x) =x ¢, x>1, o>0,
and
M,, = max(Xq,...,X,).
Then
P(M,/n'* < z) = (1 — %_a)n —~e T, x> 0.

® The limit is the Fréchet distribution.
e It is one of the three max-stable distributions; they are the
only non-degenerate limit distributions for maxima of an iid

sequernce.



e EExample. The Cauchy distribution has density and

characteristic function, respectively,

xTr) = 1 an ze_ltl
fx(x) (1t [2]?) d ex(t) :

e A Cauchy random variable X is regularly varying with index 1.

e IID copies (X;) of X satisfy

nlS, =n (X1t + X)) =X, n>1.

@ The Cauchy distribution is one of the infinite variance

sum-stable limit distributions for 1id random variables.



e The regular variation condition

L(x) L(w)

and P(X < —x) ~q

is used as modeling assumption in applied probability,
—in insurance mathematics,

— queuing (e.g. data networks),

— (financial) time series analysis,

— climate and weather research,

— seismology, ...
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Ficure 1. Time series of transmission durations of Ethernet files.
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Ficure 2. Danish fire insurance data.
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Ficure 3. Plot of 9558 S¢P500 daily log-returns from January 2, 1953, to December 31, 1990. The
year marks indicate the beginning of the calendar year.
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Ficure 4. Hill estimates of the upper and lower tail indices of log-returns for 420 univariate time series

from S&P 500.
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Ficure 5. Scatterplot of 5 minute foreign exchange rate log-returns, USD-DEM against USD-FRF.
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Ficure 6. Scatterplot of file sizes of teletraffic data.
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2. MULTIVARIATE REGULAR VARIATION

e An R%valued random vector X = (X;,..., X ) is regularly
varying if there exists a non-null Radon measure v; on

R4 = R4\ {0}* such that Resnick (1987,2007)

Pz~ !X €-) ,
P(IX] > @)

pa(c) = > va(+) 5 T — 0O,

e The measure v; determines the extremal dependence structure

of the vector X. It has the scaling property
ve(tA) =t *vy(A), t >0, for some a > 0.

e ¢ is the index of regular variation or tail index.

2The measure is finite on sets bounded away from zero.
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e X is regularly varying with index « if and only if there exist a
vector ®, with values in the unit sphere of R? and an

independent Pareto distributed random variable Y, i.e.,

P(Yo >t) =t~ t > 1, such that

X d

e The radial and the spherical parts of X are asymptotically
independent for large values of |X|.
e This property allows one to estimate probabilities of extreme

events for which no or only a few data are available.
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e Regular variation is preserved under homogeneous continuous
: . Rk d
mappings f : R¥ — R,

e For example,

Plx"(X;+---+Xi) €) &

> UV ERF:xi 4+ a1 €-}).
B > o) e e

Sums of regularly varying random variables are regularly
varying (possibly degenerate).
e Regular variation can be extended in a straightforward way to

abstract spaces.
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3. REGULARLY VARYING STATIONARY SEQUENCES

e An R%valued strictly stationary sequence (X;) is regularly
varying with index a > 0 if its finite-dimensional distributions

are regularly varying with index «. Davis, Hsing (1995)
e This means: for every k > 1, there exists a non-null Radon

measure p, on (R$)* such that

Pz (Xiy..., Xg) €4)
P(|Xo| > )

> () -
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e Alternatively, Basrak, Segers (2009) for a« > 0, kK > 0, there exists a

sequence (Y¢):>o such that
P(x ' (Xoy. ..y Xk) € - | [Xo| > x) = P((Yoy-.-5 Yi) € -),
e |Yy| is independent of (Yg,..., Yi)/|Yo|
eand P(|Yo| >y) =y y > 1.

e Example. Assume (X;) iid. Then Y, =0 for ¢ > 1.

e This means: If |Xy| is large, |Xy|,...,|X%| cannot be large.

Extremes appear close to the axes.
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e EExample. Consider the stochastic recurrence equation
(3.2) X, = A X, 1+ By for iid (A¢, By), A, By > 0.
o If there exists a > 0 such that E[A{| = 1 and E[B{| < oo then
P(Xy >x) ~cx™ T — 00,

and (X;) is regularly varying with index a. Kesten (1973), Goldie (1991)

e Then
_ d
£ 1(X07---7Xk) Xo>z—Y(1,A1, A1 As .o, Ay - Ay)
e For example, the extremogram of (X;): as * — oo,

P(Xy > x| Xo>x) = P(YoAr-++Ap > 1) =E[1A (A --- Ap)?].
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e Example. Consider a GARCH(1, 1) process Bollerslev (1986)

X, o1y, (Z;) iid mean-zero, unit variance,

o, = a1 X; +Pio  +ag=(aZ] |+ B)o;  + .
e The GARCH(1,1) is a major model for returns (relative
changes in a given time unit) of speculative prices.
e The process (o?) satisfies (3.2) with A; = a1 Z? | + (31 and
B; = .
e The volatility process (o:) is regularly varying and the process

(X:) inherits this property.
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e This is by virtue of
Breiman’s lemma:
for non-negative independent random variables & and 7 with
P(¢ > z) ~ cx~* L(x) and E[n®T°] < oo,
P(éEn > x) ~ E[n* P(€ > x), T — 00 .
e For the GARCH(1,1),

P(Xt > CC) P(Gt Zt > 213)

~ E[(Z,)*]P(o: > )

~ E[(Z ) cx™™.
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Ficure 7. Top: Stochastic volatility process X; = o Z; for iid student (Z;) with 4 degrees of freedom,
Gaussian ARMA(1,1) process log oy = 0.5log o414+ 0.31:—1 +n;. Bottom: GARCH(1, 1) process
X; = (0.0001 4+ 0.1X?2 , 4+ 0.902 |)**Z, for iid standard normal (Z;).



Examples of regularly varying stationary sequences.

e IID sequence (Z;) with regularly varying Zj.

e Linear processes e.g. ARMA processes with iid regularly
varying noise (Z;). Rootzén (1978,1983), Davis, Resnick (1985)

e Solutions to stochastic recurrence equation: X; = A; X;_1 + B;
Kesten (1973), Goldie (1991)

e GARCH process. Bollerslev (1986), M., Stirici (2000), Davis, M. (1998), Basrak,
Davis, M. (2000,2002)

e The simple stochastic volatility model with iid regularly

varying noise. Davis, M. (2001)
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e Infinite variance a-stable stationary processes are regularly
varying with index o € (0,2). Samorodnitsky, Taqqu (1994), Rosifiski
(1995,2000)

e Max-stable stationary processes with Fréchet (®,) marginals
are regularly varying with index a > 0. de Haan (1984), Stoev (2008),

Kabluchko (2009)
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FIGURE 8. Sample of a Brown-Resnick random field on [0, 5]? with variogram ~(¢t) = [¢|*/2 for a = 1/2, @ = 1, a = 3/2
from left to right, respectively. The grid mesh is 0.1.
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4. LIMIT THEORY FOR REGULARLY VARYING SEQUENCES

e Asymptotic theory for sums
Sn:X1_|'"'+Xn9
sample covariances, sample autocorrelations with a-stable limit
for a < 2, or a/2-limit for a < 4, periodogram,...: Rootzén (1983),
Davis, Resnick (1985,1986), Jakubowski (1993,1997), Davis, Hsing (1995), M., Kiippelberg

(1992-1995), Buraczewski, Damek, M., Jakubowski, Wintenberger, Basrak, Segers

(2005-2015), in particular Markov chains
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e Cluster Poisson limits for point processes

mn d o0 oo
O SRR SRS S S
Fi Qik
t=1 k=1 1=1

where P(|X;| > a,) ~n L, T, = E; + --- + E;, (E;) iid
exponential, (Q;x)r>1 iid, sup; Qx| < 1 a.s.

e Limit theory for maxima and order statistics and continuous
functionals acting on them, extremal index. Davis, Resnick (1985,1986),
Davis, Hsing (1995), Basrak, Davis, M. (2000-2002), Basrak, Segers (2009), M.,

Wintenberger (2013-2015)
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e Eixtremogram. An autocorrelaton function for serial extremal
dependence. Davis, M., Zhao (2009-)

e For an R%valued strictly stationary regularly varying sequence
(X¢) and a Borel set A bounded away from zero the

extremogram is the limiting function

pa(h) = lim P(z7'X, € A|z7'X, € A)

r—00

Pz~ 'Xo€e A, =z !X, € A)

= lim
T—00 P(x=1Xy € A)
—d(h—1
phi1(A X RO( ) % A)

= — ) h>0.
pri(A X Ry)



® Since
cov(I(x7 Xy € A), I(z71X}, € A))
P(x=1X, € A)
= Pl 'Xp €Az Xg€ A) —P(xz X, € A)

— pA(h) . h 2 0,
® (pa(h)) is the autocorrelation function of a stationary process.
e One can use the notions of classical time series analysis to

describe the extremal dependence structure in a strictly

stationary sequence.
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Ficure 9. Five-minute returns of USD-DEM and USD-FRF foreign exchange rates.
extremograms of the original data. Right:

GARCH fit.



e Large deviations. Approximations to rare event probabilities

such as
P(b.'S, € A) = 0
for sets A bounded away from zero. A.v. and S.V. Nagaev (1960-1979),

Hult, Lindskog, M., Samorodnitsky (1998-2007), Bartkiewicz, Damek, M., Wintenberger

(2007-)
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e Tail bounds for subadditive functionals acting on a random

-

walk with negative drift (S, — pn), where E[Xy] =0, o >

and u > 0. For example, the ruin probability

Y(u) =P(sup (S, —pn) >u), u— oco.
n>1
e The classical ruin bound for iid (X}) Embrechts, Veraverbeke (1982)
P(u) ~ constuP(Xo > u), U — 0.

M., Samorodnitsky (1998-2002), with Hult, Lindskog for multivariate random walks (2005),
with Buraczewski, Damek, Wintenberger (2007-) for Markov chains and more general

structures
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5. THE PRINCIPLE OF A SINGLE BIG JUMP (HEAVY—TAIL HEURISTICS)

e Consider an iid real-valued sequence (X;) with partial sums
Sn:X1+"'+Xn°

e A large value of S,, appears in the most natural way, due to a
single large summand X;.

e As x — oo,

P(S, > &) ~ 1@( O{Xt > :c})

=1
n

~ P(U{Xt>:c,Xj gw,j#i})

=1

~ > P(X; > ).
1=1
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® These heuristics remain valid for classes of heavy-tailed
distributions other than the regularly varying ones, e.g. the
subexponential distributions which are standard distribution in

insurance mathematics and queuing theory.
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6. LARGE DEVIATIONS FOR A REGULARLY VARYING SEQUENCE

e Partial sums of a univariate regularly varying sequence (Xj;):

S, =X +--+X,,, n>1,

Assume E[X,] = 0 if E[| X(|] < oo and P(|Xo| > a,) ~ n~ L
e Then the following relation holds for a > 0 and suitable

sequences b,, T 00 A.V. Nagaev (1969), S.V. Nagaev (1979)

. P(S,, > x)
lim sup —
n=%0 3 >b, |1 P(| Xo| > )

pl =0.

For a < 2, one can choose any (b,,) such that b,/a,, — oo,

for o > 2, b, > Vanlogn, a > o — 2.
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e A functional (Donsker) version for multivariate regularly
varying summands holds in the iid case and is applied to get
bounds for ruin probabilities. Hult, Lindskog, M., Samorodnitsky (2005)

e For dependent sequences, the limit in Nagaev’s result has to be

adjusted for extreme cluster effects.



7. CONCLUDING REMARKS

e Over the last 25 years, a (functional) calculus of regular
variation for stochastic processes, and functionals acting on
them has been developed.

e This calculus has been triggered by problems arising in areas
such as time series analysis, data networks, climate research.

e Regular variation focuses on power laws, but not all heavy-tail
phenomena are due to power law tails.

e The literature on processes with semi-exponential
(subexponential) multivariate tails is relatively sparse and
constitute a widely open field. Sece e.g. Asmussen, Rojas-Nandayapa

(2008,2015), Foss, Korshunov, Zachary (2013), Tankov (2013)
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e Problems of simulating rare event probabilities, max-stable
processes,. .. and estimation problems for regularly varying

structures are difficult and unsolved.



