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Preface

The first European Young Statisticians Meeting was organized in 1978 (Wilt-
shire, Great Britain), the second one in 1981 (Bressanone, Italy), and since then
regularly every two years in different European countries.

From the very beginning the idea of the event is that young researchers from dif-
ferent countries come together and establish new research contacts at the beginning
of their scientific careers.

In line with previous meetings, each of the representatives from selected Euro-
pean countries suggested at most two young researchers to participate in the Meet-
ing. Also, five distinguished researchers have been invited to give plenary lectures.

We hope that you find the Meeting interesting and useful.

Welcome to the 19th EYSM 2015 in Prague. Enjoy the city, its history, its
architecture and culture, and have a great time!

Local Organizing Committee
Prague, July 2015



Contents
Mohamed Amghar and Maarten Jansen:

Optimal Bandwidths for Multiscale Local Polyno-
mial Decompositions . . . . . . . . . . . . . . . . . . . . . . 1

Slav Angelov:
Modelling Company Performance Based on Finan-
cial Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Oykum Esra Askin and Deniz Inan:
Weibull-Poisson Regression Model with Shared Ga-
mma Frailty . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Irina Adriana Bancescu:
A Mentenance Model with a Quasi Generalized Lind-
ley Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 9

Bogdan Corneliu Biolan:
The Weighted Log-Lindley Distribution and Its Ap-
plications to Lifetime Data Modeling . . . . . . . . . . . 10
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Jakob Söhl and Mathias Trabs:
Adaptive Confidence Bands for Markov Chains and
Diffusions: Estimating the Invariant Measure and
the Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Emil Aas Stoltenberg and Nils Lid Hjort:
The c -Loss Function: Balancing Total and Individ-
ual Risk in the Simultaneous Estimation of Poisson
Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Hubert Szymanowski and Jan Mielniczuk:
Selection Consistency of Generalized Information Cri-
terion for Sparse Logistic Model . . . . . . . . . . . . . . 139

M̊ans Thulin:
k-Sample Tests for Multivariate Censored Data . . . . . 140

Athanasios Triantafyllou, George Dotsis and Alexander H. Sar-
ris:
Forecasting Extreme Events in Agricultural Com-
modity Markets . . . . . . . . . . . . . . . . . . . . . . . . . 141

Ivo Ugrina:
Overview of Some Interesting Statistical Problems
in Biochemical Analysis of Glycans . . . . . . . . . . . . 146
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Optimal Bandwidths for Multiscale Local
Polynomial Decompositions

Mohamed Amghar∗1 and Maarten Jansen2

1Department of Mathematics and Statistics,
Université Libre de Bruxelles, Belgium

2Departments of Mathematics and Computer Science,
Université Libre de Bruxelles, Belgium

Abstract: This paper discusses the choice of the bandwidths in a multiscale local
polynomial data transform. The transform adopts the local polynomial smoothing
paradigm for the construction of a multiresolution data decomposition, much like a
wavelet transform or a Laplacian pyramid. The bandwidths depend on the resolu-
tion level, defining for each level the scale of the coefficients. As a result, the scale
is not necessarily dyadic as in a discrete wavelet transform, nor is it grid dependent
as in second generation wavelet transform. Unlike in a uniscale local polynomial
smoothing scheme, the bandwidth in a multiscale data transform is not optimised
for data processing, i.e. smoothing, but rather for data transformation. The band-
width at each level should be chosen in a way that it makes the representation
after transformation as suitable as possible for subsequent, non-linear processing.
We argue that the choice typically amounts to maximisation of the L1-sparsity of
the data in the absence of noise. We also investigate the multivariate optimisation
problem of choosing bandwidths at successive scales.

Keywords: local polynomial, thresholding, sparsity, bandwidth, wavelet

AMS subject classifications: 62J07, 62G08, 62J02

1 Introduction

In a wavelet representation, data are decomposed into a basis that consists of basis
functions that are all translations and dilations of a single mother function. As a
consequence, each wavelet coefficient carries specific, local information about the
data. More specifically, it describes the contribution at a local scale and at a local
point in a time to the data. As all basis functions are translations and dilations,
the data must be sampled on an equispaced, dyadic grid of locations.

The multiscale local polynomial decomposition [3] provides an alternative for
wavelet transforms when the observations are non-equispaced. The decomposition
combines the benefits of two approaches. On one hand, the local polynomial ap-
proach leads to a representation in which all coefficients carry information that
is local in time. On the other hand, the scales in multiscale transformation are
set by choosing a sequence of bandwidths. In this transform, the bandwidth is a
scale parameter. It provides a natural way to deal with data of which the sampling

∗Corresponding author: Mamghar@ulb.ac.be
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rate fluctuates over time. As the bandwidths play a role in a data transformation,
rather than in data processing, the bandwidths selection is driven by different ob-
jectives than in a uniscale smoothing setting. The bandwidths should be taken such
that the data are represented in an optimal way for further nonlinear processing,
however without processing the data at this stage.

Section 2 of this paper reviews the key elements of the multiscale local poly-
nomial transform, highlighting the differences with a wavelet transform. Next, in
Section 3, we discuss a model for sparsity leading to a criterion for the optimal
selection of the bandwidths. Finally, in Section 4, we explore a few heuristics in
the multivariate bandwidth selection problem.

2 Multiscale local polynomial decomposition

The multiscale local polynomial transform is based on a Laplacian pyramid scheme
[4], which starts off by assigning the vector of observations Y to a finest scale vector
sJ . From there on, iterations over scales j = J − 1, J − 2, . . . , L proceed as

sj = (H̃jsj+1)e, (1)

dj = D−1
j (sj+1 − Pjsj). (2)

In this expression, index e stands for a subset of {0, . . . , nj+1−1}, where nj+1 is the
length of the vector sj+1. The subset e typically (but not necessarily) contains the

set of even numbers in {1, . . . , nj+1}, meaning that sj = (H̃jsj+1)e contains the

even subsamples of the vector H̃jsj+1. The matrix H̃j is a square, not necessarily
invertible matrix, aiming at some preprocessing of the data, which could be anti-
aliasing for instance. In this paper, we take H̃j = Inj+1 , and so sj = sj+1,e. If
e is indeed the set of evens, then at coefficient level we have sj,k = sj+1,2k and
so nj = dnj+1/2e. Furthermore, in (2), Dj is an optional diagonal matrix, used
for normalisation or standardisation of the coefficients. More importantly, Pj is
the local polynomial smoothing matrix, whose rows are filled in by Pj;rowk =
Pj(tj+1,2k+1; tj). In this expression, tj+1 is the grid of locations or covariate values
at scale j + 1 and tj = tj+1,e is the subsampled version of it.
The function Pj(t; tj), not to be confused with the matrix Pj , carries out the
smoothing, using a locally least squares polynomial of degree p̃− 1, i.e.,

Pj(t; tj) = T(p̃)(t)

(
T

(p̃)
j

T
Wj(t)T

(p̃)
j

)−1(
T

(p̃)
j

T
Wj(t)

)
. (3)

In this expression, T(p̃)(t) is a row vector of power functions, T(p̃)(t) = [1 t . . . tp̃−1].

The matrix T
(p̃)
j replaces the power functions in each column of T(p̃)(t) by a col-

umn of evaluations in the grid tj , leading to the construction T
(p̃)
j = [1 tj . . . t

p̃−1
j ].

Finally, Wj(t) is a diagonal matrix of weight functions with on the diagonal

(Wj)kk(t) = K
(
t−tj,k
hj

)
. The function K(t) is the kernel function and hj is the

bandwidth.
Iterative application of (1) and (2) leads to a decomposition of Y = sJ into

[sL,dL, . . .dJ−1]. The inverse transform leading to the reconstruction of sJ can
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be realized by the iteration

sj+1 = Djdj + Pjsj , (4)

starting from sL and dL. The decomposition is overcomplete, as the number of
coefficients in the representation equals

#{sL,k}+ #{dj,k, j = L, . . . , J − 1} = nL +

J−1∑
j=L

nj+1 =

J∑
j=L

dn/2J−je = O(2n).

We emphasize that although the transform is redundant, most of the O(2n) coef-
ficients in the decomposition will be close to zero. This sparsity allows us to use
the decomposition in a subsequent data compression scheme. The redundancy is
in contrast to a fast wavelet transform, which is critically subsampled, meaning
that n observations lead to n coefficients. The difference between a redundant
and a critically downsampled transform comes from a different construction of the
detail coefficients dj . This is best illustrated with a simple example of a wavelet
transform whose form comes as close as possible to that of the multiscale local
polynomial transform. That wavelet transform is proceeds as an iteration of

sj = sj+1,e, (5)

dj = D−1
j (sj+1,e′ − Pjsj). (6)

In each step, the index set {0, . . . , nj+1} is partitioned into “even” and “non-even”
(odd) complements e and e′. As a consequence the number of detail coefficients
equals #{dj,k} = nj+1 − nj , and hence #{sL,k} + #{dj,k, j = L, . . . , J − 1} =

nL +
∑J−1
j=L(nj+1−nj) = nJ = n. In each step, one half of the data, sj+1,e, is used

to predict the other half, sj+1,e′ , using a prediction matrix Pj . The construction
is a simple example of a lifting scheme [6]. All classical wavelets can be factored
into this scheme. On the other hand, just as the multiscale local polynomial trans-
form, the construction of a lifting scheme does not require equispaced, dyadic data
nonequispaced data. When the scheme takes the irregularity of tj+1 into account,
the resulting wavelets are termed second generation wavelets [7].

Unlike the multiscale local polynomial transform, however, the lifting scheme
cannot use local polynomial or any other smoothing operation in its prediction
matrix Pj . This is because the inverse transform from processed coefficients would
lead to a fractal like reconstruction [3]. This can be understood by looking at the
reconstruction from a coarse scale approximation where all details happen to be
zero. In that case, the odd fine scale coefficients follow from sj+1,e′ = Pjsj + dj =
Pjsj+1,e. For a smooth reconstruction, it is necessary that if an odd point tj+1,2k+1

is close to its even neighbour, then so should be the coefficients. This means that

lim
u→tj,k

Pj(u; tj) · sj = sj,k, (7)

which is not the case if Pj(u; tj) is a smoothing operation. Instead, wavelet trans-
forms either use more complicated lifting schemes, or, if they use a simple prediction
operation, then this must be interpolating.
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Besides the overcompleteness and the sort of prediction operation, a third im-
portant difference between wavelets and multiscale local polynomial transforms lies
in the definition of scales at each resolution level. In a wavelet transform, the scale
of the prediction operator follows from the distance between adjacent points in
tj . The prediction uses a fixed number of points from tj that are close to a given
point in tj+1,e′ . The scale of the prediction operation thus depends on the local
sample density. Moreover, in 2D, the lifting scheme needs a triangulation or some
other system that describe neighbourhood. In the local polynomial transform, both
scale and neighbourhood are fixed by the bandwidth, which leads to a more stable
decomposition that is also easier to implement. The number of nonzeros in row
k of the prediction matrix Pj depends on the number of adjacent points within
the bandwidth around tj+1,2k+1. A matrix Pj in a wavelet transform has a fixed
number of nonzeros in each of its rows.

3 A model for bandwidth selection

In a multiscale local polynomial transform, the bandwidth represents the scale of
resolution level j. It also defines the set of neighbours for each point in tj+1. Unlike
in uniscale local polynomial smoothing [1, Chapter 3], or local polynomials with
time varying bandwidths [5], the objective in the context of this paper is to control,
but not to reduce the variance of the reconstruction. Variance reduction, denoising,
or smoothing is left to the nonlinear processing within the sparse representation.

The nonlinear processing consists of a selection of large coefficients, for instance
by thresholding. In this framework, the bandwidths hj are chosen to make the
selection as successfull as possible. The success of a nonlinear processing depends
of course on the strategy and the criterion used in the selection, but also on the
sparsity of the data representation. By sparsity we mean that the information
available from n observations can be captured by a small subset of the coefficients,
while most of the coefficients are close to zero. This is modelled by assuming that
all coefficients dj,k come from a random variable plus noise [2]. The model for the
random variable is a mixture distribution, imposing most observations to be near
zero, while a few outliers carry all the essential information. The sparsity model
becomes

D̃n = XnDn,1 + (1−Xn)Dn,0 + σZ. (8)

The dependence on the sample size allows us to let sparsity increase for n →
∞, thereby expressing a general principle that higher the sample sizes generally
imply more redundancy in the observations. The variables Dn,x for x ∈ {0, 1} are
modelled to have a double exponential (Laplacian) distribution with parameters
an,x. The binary label Xn, with Bernoulli distribution, labels the class to which

D̃n. With small probability pn = P (Xn = 1), we have D̃n = Dn,1 + σZ, i.e., D̃n

is a large coefficient with noise. This occurs if the prediction of sj+1,2k+1 is far
from the actual value, which is the case if tj+1,2k+1 lies within a bandwidth hj
from a singularity in f(t). In the other case, modelled by the even {xj,k = 0}, the
detail offset dj,k is small plus noise, which corresponds to f(t) being Lipschitz p̃
continuous on [tj+1,2k+1 − hj , tj+1,2k+1 + hj ].
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In general, the bandwidths in a data transform will be smaller than in a context
of data smoothing, as there is no reason to take the bandwidth any larger than
strictly necessary for the purpose of the construction of a p̃− 1 degree polynomial
around each point in tj+1. Unnecessarily large bandwidths would increase the
number of coefficients that have a singularity within a bandwidth’s distance. In
practice, the bandwidth will even be smaller, leaving some of the points tj+1 with
a lower degree local polynomial. If the detail coefficient in such a point is small,
modelled by Dn,0, that is, it may see a slightly increasing value due to the lower
degree of the polynomial. This increase is compensated by a reduced number of
large coefficients, those modelled by Dn,1.

The objective is to select the bandwidths hj so that the sparsity model (8)
becomes as likely as possible. Let p̂n, ân,0, ân,1 and σ̂2 be the maximum likelihood
estimators for the model parameters, given the coefficients d = [dj ] for given choices
of hj , j = L, . . . , J − 1. Then we optimize the likelihood

L(p̂n, ân,0, ân,1, σ̂
2;d;h)

as a function of h = [hL, . . . , hJ−1]. Unfortunately, the likelihood turns out to
be very sensitive to misspecification of the model for the small coefficients, lead-
ing to poor estimations of an,0, and consequently, poor comparisons of maximum
likelihood values for different choices of bandwidths. On the other hand, as the
information is concentrated in the large coefficients, the quality of the represen-
tation depends primarily on these values. It can be formalized that under mild
conditions [2], the soft-thresholded (ST) coefficients have a zero inflated Laplacian
distribution whose parameter does not depend on the noise, i.e., for an appropriate
threshold λn, we have

ST(D̃n, λn)
d−→ X̃nDn,1, (9)

where X̃n = I(|D̃n| > λn). The optimization of the likelihood of the model for

ST(D̃n, λn) amounts to a minimization of the `1 norm of the thresholded coeffi-
cients, i.e., find hj so that

J−1∑
j=L

nj+1∑
k=1

|ST(dj,k, λn)| =
J−1∑
j=L

nj+1∑
k=1

ST(|dj,k|, λn)

is minimized.

4 Bandwidths in a multiscale transform

Since the bandwidth operates as the scale in a multiscale decomposition, it can be
optimised at each resolution level j. Our first simulations, illustrated in Figure 1
seem to suggest that the bandwidth at each scale roughly increases in a dyadic way,
but not quite so. Our experiment was set up as follows: a test signal, commonly
known as the heavisine test function, was sampled without error, at 1000 inequidis-
tant points, which were uniformly distributed on the x-axis. Next, the multiscale
local linear transform was carried out using 4 resolution levels, using a cosine ker-
nel function. At each resolution level, the optimal bandwidth was defined as the
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Figure 1: Sparsity, defined as ‖dj‖1, as a function of bandwidth hj at scales j =
J − 1, J − 2, J − 3, J − 4. The optimal bandwidths at finer scales are used when
proceeding to the next coarser scale.

bandwidth that minimizes ‖dj‖1, and this bandwidth was used when proceeding
to the next, coarser scale. Further experiments confirm that this scale-by-scale op-
timization finds a vector of bandwidths that is close to the globally optimal vector
of bandwidths.
Acknowledgements: Research support by the IAP research network grant nr.
P7/06 of the Belgian government (Belgian Science Policy) is gratefully acknowl-
edged.
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Abstract: This research is based on the information gathered from the yearly
financial reports of the companies from the bulgarian gas supplying industry. There
are around 30 firms licensed to do such an activity. Analysing their behavior,
stability and future is a part of the macroeconomic situation in the country.
The goal is to make a model which will predict their stability.
We will explore a few dozen financial ratios which are extracted from the data in the
reports. To reach the goal regression analyses techniques will be used. Calculations
and graphics are realized in R language. The model will be compared with existing
econometric models e.g Altman Z-score model.
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Abstract: Frailty models are extensively used in modeling unobserved hetero-
geneity. The hazard shape of lifetimes should be determined correctly in order
to obtain unbiased parameter estimates. Weibull, Gompertz and Exponential dis-
tributions are the most popular on the choice of hazard function. In some cases,
the occurrence of an event depends on several causes or latent risks and we can
only observe the minimum lifetime. Based on this type of latent competing risk
scenario, several distributions have been introduced as a particular case of homoge-
neous Poisson process. To the best of our knowledge, there is no work examines the
convenience of such distributions in frailty models. In this study, we propose a bi-
variate Weibull-Poisson regression model with shared gamma frailty. The Particle
Swarm Optimization (PSO) is performed to find MLEs of simulated data.

Keywords: frailty model, shared gamma frailty, particle swarm optimization
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A Mentenance Model with a Quasi Generalized
Lindley Distribution

Irina Adriana Bancescu∗

Doctoral School of Mathematics, University of Bucharest, Romania

Abstract: Lindley distribution has been recently in the attention of statistics
that showed its flexible properties proving its better suitability for modelling life-
time data. This paper proposes a new generalization which has three submodels:
the Lindley, exponential and gamma distribution. Several properties have been
discussed and an application for mentenance models is proposed.

The Lindley distribution was introduced by Lindley (1958) as a new distribution
useful to analyze lifetime data especially in applications modeling stress-strength
reliability. Ghitany et al. (2008) have showed that this distribution is better than
the exponential one when its come to modelling lifetime data. They also showed in
a numerical example that the Lindley distribution gives better modeling for waiting
times and survival times data than the exponential distribution.

In 2013 Rama and Mishra have introduced a new two-parameter Quasi Lindley
distribution (QLD), of which the Lindley distribution (LD) is a particular case.
The properties of OLD have been studied showing its better flexible than Lindley
and exponential distributions.

We introduce a new quasi generalized Lindley distributions (QGL) which re-
duces not only to the Lindley distribution, but also to the gamma and exponential
distribution, so being more suitable for modelling lifetime data.

With the development of industry mentenance models have also developed.
Lam Y. and Zhang Y.L. (2003) have proposed a mentenance model for a intrinsec
deteriorating system. Based on this model Lam. Y. has developed a mentenance
model for a deteriorating system subjected to an random external damage. We
consider the model by Lam. Y (2007) with functioning times and repair times
independent identically distributed quasi generalized Lindley and not only.

Keywords: quasi generalized Lindley distribution, hazard function, mentenance
model

AMS subject classifications: 60E15, 62F03, 62F10, 62P30
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The Weighted Log-Lindley Distribution and Its
Applications to Lifetime Data Modeling

Bogdan Corneliu Biolan∗

University of Bucharest, Doctoral School of Mathematics, Bucharest, Romania

Abstract: Modeling and analyzing data represent important issues in many ap-
plied sciences, including engineering, finance, actuarial science and medicine. The
relevance and effectiveness of the methods used in statistical research are deter-
mined by the probability distribution used for modeling real data. The need to
solve problems involving a large range of real data sets conducted to the develop-
ment of various classes of new probability distributions.

Recently, a lot of distributions for modeling and analyzing data sets have been
proposed. However, researchers often face a lot of critical situations when real data
does not follow any of the existent probability distributions. Beside these, when
data are recorded according to a certain stochastic model, the recorded observations
will have the original distribution if and only if equal chance of being recorded is
given to every observation. Biased data arise in all domains of science. Often,
sampling units cannot be selected with equal probability for statistical studies.
The importance of using weighted distributions arises in such kind of situations.
Among the solutions for bias correction, weighted distribution theory gives a unified
approach for modeling the biased data.

In this paper we introduce the new family of Weighted Log-Lindley distribution,
which represents an extension of the Log-Lindley distribution. Its mathematical
properties will be studied, including moments, quantile and generating functions,
order statistics, Kullback-Leiber divergence and Shannon entropy. The inference
with respect to the initial model will be studied in order to compare the perfor-
mance between the new model and the Log-Lindley distribution in terms of ade-
quacy for data modeling. Maximum likelihood estimators for the new model will be
derived and compared with the estimators corresponding to the original model and
to other related distributions. Also some applications will be developed, regarding
stochastic dominance and Fisher information matrix. The conclusions drawn indi-
cate that the Weighted Log-Lindley distribution represents a more flexible family,
with powerful statistical performances for modeling a large range of data sets.

Keywords: weighted Log-Lindley distribution, stochastic ordering, Log-Lindley
distribution, data modeling, insurance

AMS subject classifications: 60E15, 62F03, 62F10, 62P05
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Partial Least Squares
A New Statistical Insight through Orthogonal

Polynomials

Mélanie Blazère∗1, Fabrice Gamboa and Jean-Michel Loubes1

1Institut de mathématiques de Toulouse, France

Abstract: Partial Least Square (PLS) is nowadays a widely used dimension re-
duction technique in multivariate regression, especially when the explanatory vari-
ables are highly collinear or when they outnumber the observations. Originally
designed to remove the problem of multicollinearity in the set of explanatory vari-
ables, PLS acts as a dimension reduction method by creating orthogonal latent
components that maximize the variance and are also optimal for predicting the
output variable. If the PLS method proved helpful in a large variety of situations
(especially in chemical engineering and genetics), this iterative procedure is com-
plex and still little is known about its theoretical properties. In this paper, we
present a new approach (based on the connections between PLS and orthogonal
polynomials) to analyse some statistical aspects of this method. First, we present
the PLS method as it was initially introduced. Then, we explain the link between
PLS and some specific discrete orthogonal polynomials, that we refer to as the
residual polynomials. Thanks to the theory of orthogonal polynomials, we then
derive an explicit analytical expression for the residual polynomials that clearly
shows how the PLS estimator depends on the signal and noise. Based on this
approach, new results are stated for the empirical risk and the mean square pre-
diction error. The shrinkage properties of the PLS estimator are also investigated.
At last, we show how this new approach, through polynomials, provides a unified
framework to easily recover most of the already known PLS properties.

Keywords: Partial Least Squares regression, orthogonal polynomials, empirical
risk, mean squares prediction error, shrinkage properties

AMS subject classifications: 62J05, 62J07, 62H12

1 Introduction

In this talk, I will present to you a new approach for PLS. If the PLS statistical
properties are not fully understood, it is mainly because the PLS estimator de-
pends in a non linear and complicated way on the response. Our work has mainly
consisted in finding an explicit expression (with respect to the noise and to the
eigenelements of the design matrix) of the dependency function that links the PLS
estimator to the response. [1]. Then, we have taken advantage of this work to
bring new elements in the study of the statistical properties of this estimator [2].

∗Corresponding author: melanie.blazere@math.univ-toulouse.fr
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2 Framework

2.1 The model

We consider the following regression model

Y = Xβ∗ + ε (1)

where Y ∈ Rn denotes the response, X ∈ Mn×p is the design matrix, β∗ ∈ Rp is
the unknown target paremeter and ε ∈ Rn represents the noise. We allow p to be
larger than n and we denote by r the rank of XTX.

2.2 An important tool: the singular value decomposition

The singular value decomposition of X is given by

X = UDV T

where the columns of U ∈ Mn,n, denoted by u1, ..., up, form an orthonormal basis
of Rn and those of V ∈ Mp,p, denoted by v1, ..., vp, an orthonormal basis of Rp.
The matrix D ∈ Mn,p contains (

√
λ1, ...,

√
λr) on the diagonal and zero anywhere

else. Without loss of generality, we assume that λ1 ≥ λ2 ≥ .... ≥ λr > 0.
We define ε̃i := εTui, i = 1, ..., n and β̃∗i := β∗T vi, i = 1, ..., p. The two

following quantities are important and will appear many time in this talk.

1. pi := (Xβ∗)Tui, i = 1, ..., n.

2. p̂i := Y Tui, i = 1, ..., n.

2.3 The PLS method

The PLS method [3] at step k (where k 6 r) consists in finding (wk)1≤k≤K and

(tk)1≤k≤K that maximise [Cov(Y,Xwk)]
2

under the constraints

‖wk‖2 = 1 and tk = Xwk orthogonal to t1, ..., tk−1.

The PLS estimator at step k denoted by β̂k is given by regressing Y on t1, ...tk.
In this paper, we do not consider the sequential construction of the PLS com-

ponents. We rather use that PLS is the minimization of least squares over some
Krylov subspaces.

Proposition 1. [4].
For 1 ≤ k ≤ r, we have

β̂k = argmin
β∈Kk(XTX,XTY )

‖Y −Xβ‖2

where Kk(XTX,XTY ) =
{
XTY, (XTX)XTY, ..., (XTX)k−1XTY

}
.

We refer to [5, 6, 7] and to [8] for an overview of important known results on
PLS.
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3 Link between PLS and orthogonal polynomials

For every k ∈ N, we denote by Pk the set of the polynomials of degree less than k
and by Pk,1 the set of the polynomial in Pk whose constant term equals 1.

3.1 PLS, a minimization problem over polynomials

Proposition 2 below shows that β̂k is of the form P̂k(XTX)XTY , where P̂k ∈ Pk−1

is a kind of polynomial regularization of the inverse of XTX.

Proposition 2. [1]
Let k ≤ r. We have

β̂k = P̂k(XTX)XTY

where P̂k ∈ Pk−1 satisfies

P̂k ∈ argmin
P∈Pk−1

‖Y −XP (XTX)XTY ‖2

and

‖Y −Xβ̂k‖2 = ‖Q̂k(XXT )Y ‖2

where Q̂k(t) = 1− tP̂k(t) ∈ Pk,1 satisfies

Q̂k ∈ argmin
Q∈Pk,1

‖Q(XXT )Y ‖2.

The polynomials Q̂k are called the residual polynomials.

3.2 The residual polynomials

The sequence of residual polynomials
(
Q̂k

)
06k≤r

is orthogonal with respect to a

discrete measure.

Proposition 3. [1]

Q̂0 := 1, Q̂1, ..., Q̂r are orthogonal polynomials with respect to the discrete mea-
sure

dµ̂ =

r∑
i=1

λip̂
2
i δλi .

4 Main result: an explicit analytical expression of
the residual polynomials

We are now able to establish an explicit and exact formulation for the residual
polynomials. This expression clearly shows how the disturbance on the observations
and the distribution of the eigenelements impact on the residuals.
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Theorem 1. [1]
Let k ≤ r and I+

k = {(j1, ..., jk) : r ≥ j1 > ... > jk ≥ 1} . We have

Q̂k(x) =
∑

(j1,..,jk)∈I+k

[
ŵ(j1,..,jk)

k∏
l=1

(1− x

λjl
)

]
(2)

where

ŵj1,..,jk :=
p̂2
j1
...p̂2

jk
λ2
j1
...λ2

jk
V (λj1 , ..., λjk)2∑

(j1,..,jk)∈I+k
p̂2
j1
...p̂2

jk
λ2
j1
...λ2

jk
V (λj1 , ..., λjk)2

.

V (λj1 , ..., λjk) denotes the Vandermonde determinant associated to λj1 , ..., λjk .

During the presentation, I will explain and give an interpretation of this formula.
This formula is called the representation formula.

5 Application to the study of the PLS statistical
properties

In this section, we further explore the statistical properties of PLS. We will see
how well suited is the representation formula to the study of the PLS properties.

5.1 Approximation properties

We provide below a new expression for the empirical risk in terms of the eigenele-
ments of X and of the noise on the observations.

Theorem 2. [2]
For k < r

‖ Y −Xβ̂k ‖2=

∑
r>j1>...>jk≥1

ŵj1,..,jk r∑
i=j1+1

(
k∏
l=1

(
1− λi

λjl

)2

p̂2
i

)+

n∑
i=r+1

p̂2
i . (3)

where by convention
∑n
i=r+1 p̂

2
i = 0 si r ≥ n

Proposition 4. [2]
Let k < r.

‖ Y −Xβ̂k ‖2≤
(

1− λn
λ1

)2k r∑
i=k+1

p̂2
i +

n∑
i=r+1

p̂2
i .

It should be noticed that ifλrλk > 1 − δ then
∑r
i=k+1

[∏k
l=1

(
1− λi

λl

)2

p̂2
i

]
≤

δ
∑r
i=k+1 p̂

2
i .

Furthermore, Proposition 4 allows to easily prove that PLS shrinks the residual
faster than principal components regression (PCR), in the sense that

‖ Y −Xβ̂k ‖2<
n∑

i=k+1

p̂2
i :=‖ Y −Xβ̂kPCR ‖2 .
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5.2 Prediction properties

In this section, we investigate the predictive properties of the PLS estimator
through the study of the mean squares prediction error.

5.2.1 A new MSPE decomposition

We study the PLS Mean Squares Prediction Error (MSPE) defined as

MSPE(β̂k) := E
[
‖ Xβ∗ −Xβ̂k ‖2

]
.

Proposition 5 below provides an interesting decomposition of ‖ Xβ∗ −Xβ̂k ‖2.

Proposition 5. [2]

‖ Xβ∗ −Xβ̂k ‖2=

r∑
i=1

Q̂k(λi)p
2
i +

r∑
i=1

(
1− Q̂k(λi)

)
ε̃2
i . (4)

It should be noticed that β̂k =
∑r
i=1

(
1− Q̂k(λi)

) p̂i√
λi
vi, so that the PLS

estimator can be viewed as a shrinkage estimator. However, the PLS filter factors
are random and not always in [0, 1]. In this talk, I will explain why an expansion
in some of the eigendirections does not necessarily lead to an increase of the MSPE
in case of PLS, by looking into details at Proposition 5,.

5.2.2 An upper bound for the MSPE under a low variance of the noise

Here, we aim at having a control of 1
n ‖ Xβ∗−Xβ̂k ‖2. The real variables ε1, ..., εn

are assumed to be unobservable i.i.d centered gaussian random variables with com-
mon variance σ2

n and it is assumed that

• (H.1): σ2
n = O( 1

n ) and (H.2): min
1≤i≤n

{p2
i } ≥ Ln := logn

n .

We get the following theorem

Theorem 3. [1]
Let k ≤ r. Assume (H.1) and (H.2).

With probability larger than 1− n1−C where C > 1, we have

1

n
‖ Xβ∗ −Xβ̂k ‖2 ≤

1

n

(
1− λn

λ1

)2k r∑
i=k+1

p2
i +

log(n)

n2

n∑
i=1

|1−Q∗k(λi)|

+A.
k

n

√
log n

nLn

n∑
i=1

max
I+k

(
k∏
l=1

∣∣∣∣ λiλjl − 1

∣∣∣∣
)2

p2
i

 ,
where A > 0 is a constant and Q∗k is the noise-free version of Q̂k.

During the presentation, I will go into the details of the main ideas that enable
to get this result.
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Genome-wide association studies (GWAS) have become increasingly popular in
investigating the genetic factors of human disease as well as studying the phenotype-
genotype associations. Technological progress and development in the area of math-
ematical methods for large-scale data analysis allow to use these type of studies
in a growing class of problems. One of the most common approaches is the quan-
titative trait locus (QTL) mapping which rely on the identification of regions on
the genome which influence a quantitative phenotype data, e.g. height, biomarker
concentrations or gene expression. The standard is to store genotype data in the
form of matrix X ∈M(n, p), where p is the number of all considered regions and n
represents the number of all individuals involved in the study. Under such circum-
stances, QTL maping is most commonly presented as a problem of explanatory
variables selection in model Y = Xβ + z, for z ∼ N(0, σI) being stochastic error
and Y being the random variable indicating quantitative trait for which vector of
observation (phenotype data), y, is given. Here β is vector of interest and the task
is to find estimator of this parameter having relatively small number of nonzero co-
efficients (i.e. sparse solution) which corresponds to selection of relevant variables.
According to the widely spread practice we assume that matrix is centered (sum of
the elements of each column is equal to 0) and normalized so as each column has
unit l2-norm.

The aim of the project was to cluster explanatory variables into a groups and
propose the method for relevant groups estimation (i.e. finding groups contain-
ing some response-related regressors) in such way, that the group false discovery
rate (gFDR), defined as the expected proportion of truly irrelevant groups in all
discovered groups, could be controlled below the assumed level.

To achieve this goal we will use the group SLOPE method, which defines esti-
mate of relevant groups based on convex optimization problem in which information
about data structure (clusters) is contained. Group SLOPE is an generalization of
group LASSO [3], [4], [5] and it reduces to SLOPE [1], when size of each group is
equal to one. The idea of control the fraction of falsely selected groups differs our
method from others approaches, in which penalized methods are used to choose
entire groups of predictors [6], [7], [8].

In single-variable-in-group scenario the authors of [1] showed that SLOPE can
successfully control gFDR when correlations between variables are weak (under
such scenario gFDR reduces to false discovery rate, FDR). In Figure 1 we present

∗Corresponding author: damian.brzyski@uj.edu.pl
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estimated FDR in case when entries of design matrix come from standard normal
distribution (data were centered and normalized), and we compare this with GWAS
data (in both cases n = p = 1000, target FDR level is equal to 0.1 and the same
starting parameters are used). As it can be observed FDR grows rapidly beyond
assumed level in right-hand side figure which is induced by specific structure of
genetic data involving strongly correlated predictors which often are statistically
indistinguishable. This effect shows the need for developing new method, which
could be applied in the GWAS context, and provides direct motivation to this
project.
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(a) Normally distributed entries
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(b) GWAS data

Figure 1: Estimated FDR for SLOPE

The method we used, group SLOPE, has been designed to transfer the SLOPE
false discovery rate control property into groups level in situation when correla-
tions between variables, included to different clusters, are weak. Under such cir-
cumstances, grouping data based on the strength of the linearity between them is
natural procedure. Design matrices in GWA studies are structured in specific ways.
There appears tendency of strong correlation between nearly located columns while
columns of distant indices are generally weakly correlated. The dependency is not
obvious, however, and groups of strongly correlated covariates are mixed rather
than located one after another. To ”disentangle” the explanatory variables, i.e. to
permute them and cut into blocks corresponding to the various clusters, an algo-
rithm based on hierarchical clustering (HCA) [2] was used. HCA clusters data using
the similarity matrix which, in considered case, was defined based on correlation
matrix. In Figure 2 we present heatmaps of correlations matrices (absolute values)
for original data (2a) and for disentangled variables (2b). Clearly noticeable, block
diagonal structure of the latter shows that data were properly clustered.

Suppose that I = {I1, . . . , Im} is some partition of set {1, . . . , p} defining the
division of predictors into groups. Let li be the number of elements in group i for
i = 1, . . . ,m. For a given data matrix, X ∈ M(n, p), we will consider the linear
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Figure 2: Heat maps of 100 rows and columns of correlation matrix (absolute
values)

regression model with m groups of form

Y =

m∑
i=1

XIiβIi + z, (1)

where z ∼ N (0, σIn). Here, the task is to identify groups containing at least one rel-

evant variable or, equivalently, find the support of ‖βI‖2 :=
(
‖βI1‖2, . . . , ‖βI1‖2

)T
.

Let L be diagonal, m by m matrix such as Li,i = li for i = 1, . . . ,m. For given
sequence of nonincreasing, nonnegative starting parameters λ1, . . . , λm we consider
gSLOPE estimate, defined as solution to

arg min
b

{
1

2

∥∥∥y − m∑
i=1

XIibIi

∥∥∥2

2
+ σJλ

(
L

1
2 ‖bI‖2

)}
, (gSLOPE)

where Jλ is a norm defined as Jλ(b) :=
∑m
i=1 λi|b|(i) for |b|(i) denoting the ith

largest magnitude of b. For βgS being the solution to above optimization problem,
we define the estimate of ‖βI‖2 support by the indices corresponding to nonzeros
of ‖(βgS)I‖2.

Naturally the performance of group SLOPE in the context of gFDR control is
strongly influenced by the starting parameters. This issue will be discussed and
concrete choice of these parameters, depending on assumed at the beginning gFDR
level, will be proposed.

Keywords: group SLOPE, group LASSO, variables clustering, model selection,
relevant SNPs
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Abstract: In [4, 3] is proposed a method for computing optimal experimental de-
sign via linear programming (LP) as a modification of method of cutting planes [2].
We extend these results to a larger set of optimality criteria. The main idea is to
rewrite the concave, positive homogeneous optimality criterion φ in a form:

φ(ξ) = min
µ∈Ξ

∑
x∈X

H(µ, x)ξ(x), (1)

with a given function H(·; ·), ξ ∈ Ξ, the set of all probability measures on X , where
X is supposed to be finite design space. This reformulation allows us to interpret the
problem of finding optimal design ξ∗ = arg maxξ∈Ξ φ(ξ) by the iterative algorithm
which solves an LP problem at each iteration. For the criteria of D- and A-
optimality and for the class of Ek criteria we obtained the required formula (1)
using standard algebraic relations.

The proposed algorithm contains a stopping rule, but also the standard stopping
rules following from the equivalence theorem can be used. The chief advantage of
the algorithm is the possibility of combining optimality criteria or adding some
supplementary (cost) constraints linear in ξ. By modifying the algorithm we can
easily compute e.g. a D-optimal design under the condition that the A-optimality
criterion attains a prescribed value a. Moreover, the computationally difficult
problem of the “criterion robust” design (cf. [1]) can be approached by the LP
method.

Keywords: optimum design, optimality criteria, cutting-plane method, cost con-
straints
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Abstract: This paper focuses on the implementation of propensity score match-
ing for clustered data. Different approaches to reduce bias due to cluster-level
confounders are considered and compared using Monte Carlo simulations. We in-
vestigated methods that exploit the clustered structure of data in two ways: in
the estimation of the propensity score model (through the inclusion of fixed or
random effects) or in the implementation of the matching algorithm. In addition
to a pure within-cluster matching, we also assessed the performance of a “pref-
erential” within-cluster matching. This approach first searches for control units
to be matched to treated units within the same cluster. If matching is not pos-
sible within-cluster, then the algorithm searches in other clusters. The preferen-
tial within-cluster matching approach, combining the advantages of within- and
between-cluster matching, showed a relatively good performance both in the pres-
ence of big and small clusters and it was often t he best method.

Keywords: causal inference, hierarchical data, propensity score matching

1 Introduction

In observational studies, direct comparison of outcomes across treatment groups
can give rise to biased estimates because groups being compared may be different
due to lack of randomization. Subjects with certain characteristics may have higher
probabilities than others to be exposed to the treatment. If these characteristics
are also related to the outcome under investigation, an unadjusted comparison of
the groups is likely to produce wrong conclusions about the treatment effect.

Propensity scores, defined as the probability to receive the treatment conditional
on the set of observed variables, were introduced by Rosenbaum and Rubin [4] as
a one-dimensional summary of the multidimensional set of covariates, such that
when the propensity scores are balanced across the treatment and control groups,
the distribution of all covariates are balanced across the two groups. In this way
the problem of adjusting for a multivariate set of observed characteristics reduces
to adjusting for the one-dimensional propensity score. (See Austin [1] for a review
on the use of propensity score methods in the medical literature).

In this paper, we focus on propensity score matching and consider different
approaches to take into account the clustered structure of the data with the aim
of reducing the bias due to cluster-level confounders. We consider methods that
exploit the information on the clusters to which units belong in two ways: in the
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estimation of the propensity score model via the inclusion of fixed or random effects;
in the implementation of the matching algorithm.

When clusters sizes are big enough, within-cluster matching is a valid strategy
but it can still imply the lost of many units that cannot find a match because the
search is forced to be within clusters [2]. Discarding unmatched units is problem-
atic because it may imply a change of the estimand [3]. In addition to a pure
within-cluster matching, we also propose and assess the performance of an ap-
proach that has not been tested in previous studies. This approach first searches
for control units to be matched to treated units within the same cluster. If match-
ing is not possible within-cluster, then the algorithm searches in other clusters.
This approach, that we define ‘preferential’ within-cluster matching, is expected to
carry the benefits of pure within-cluster matching (in terms of bias reduction) and
matching on the pooled dataset (in terms of minimizing the number of unmatched
units).

2 Background

Consider a two-level data structure where N individual-level units, indexed by i
(i = 1, 2, ..., nj), are nested in J second-level units (clusters), indexed by j (j =
1, 2, ..., J). We consider a binary treatment administered at the individual level,
T , and an outcome variable, Y also measured at the individual level. Confounders
can be first (X) or second-level (Z) variables.

Usually, the Average Treatment effect on the Treated (ATT) is considered as an
interesting summary of individual causal effects: ATT = E(Yij(1) − Yij(0) |Tij =
1). To identify the ATT with observational data, the following assumptions are
often invoked:

• Unconfoundedness: Y (1), Y (0) ⊥ T |(X,Z);

• Overlap: 0 < P (T = 1 | (X,Z)) < 1.

Under the previous assumptions, adjustment on the propensity score is sufficient
to eliminate bias due to observed confounders [4]. The propensity score, e, is defined
for each unit as the probability to receive the treatment given its covariate values:
eij = P (Tij = 1 | (Xij , Zj)). Rosenbaum and Rubin [4] proved that the propensity
score is a balancing score, i.e., (X,Z) ⊥ T | e(X,Z), meaning that at each value
of the propensity score the distribution of the covariates defining the propensity
score is the same in the treated and control groups. They also showed that if
unconfoundedness holds conditioning on covariates it also holds conditioning on the
propensity score, i.e., Y (1), Y (0) ⊥ T | e(X,Z). These results justify adjustment
on the propensity score instead of on the full multivariate set of covariates.

Usually, in observational studies the propensity score is not known and must be
estimated from the data. Parametric models, such as logit or probit models, with
inclusion of interactions and higher order terms are commonly used. An incorrectly
estimated propensity score may fail to respect the balancing property. Our focus
is not on misspecification of the functional form of the propensity score model but
on the bias caused by omitted cluster-level confounders. If one or more variables
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affecting the selection into treatment and potential outcomes are not observed, then
unconfoundedness is violated and ATT estimators based on the propensity score
will be biased. the foll owing can be adapted when some observed cluster-level
variables are observed and others are not.

Among propensity score methods available to adjust for an unbalanced distribu-
tion of covariates between treated and control groups, we consider propensity score
matching (PSM). In particular, we consider one-to-one nearest neighbor matching
within a maximum distance (caliper) of 0.20 standard deviations of the estimated
propensity score. For each treated unit in the sample, the algorithm searches for
the closest control unit in terms of propensity score. If no control unit is available
in the range defined by the caliper, the treated unit is discarded from the working
sample. We considered matching with replacement, where the same control unit
can be used several times as a match. Matching with replacement is expected to
improve the quality of matches and therefore to reduce bias [8]. However, a bias-
variance trade-off emerges because matching with replacement increases variance
of estimates [9]. Since our main focus is on the bias of the estimators we considered
matching with replacement.

When the dataset has a 2-level structure one can consider different ways of
implementing PSM. The methods we compare are as follows:

A) Single-level propensity score model; matching on the pooled dataset;

B) Single-level propensity score model; within-cluster matching;

C) Single-level propensity score model; preferential within-cluster matching;

D) Random-effects propensity score model; matching on the pooled dataset;

E) Fixed-effects propensity score model; matching on the pooled dataset.

3 Simulation scenario

In this section we describe our simulation experiments aimed at comparing the
performance of the different matching strategies described above in the presence of
unobserved confounders at the cluster-level.

3.1 Set-up

We designed our simulation experiments to mimic the observed data in several
respects. First, we kept the same data structure observed in our dataset, i.e. the
same number of clusters (hospitals) and the same clusters’ sample sizes (see Table
1). In this way, in our simulations we consider a realistic case with a strongly
unbalanced structure where some clusters are big and others have small sample
sizes. Second, instead of generating values of covariates as realizations of random
variables as typically done in simulation studies, we used the same covariates dis-
tribution as observed in the dataset. The only exception was for a cluster-level
variable, Z, that we introduce to explore the confounding effect at the cluster (i.e.,
hospital) level. Finally, the coefficients of individual-level covariates in the true
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models generating the treatment and the outcome were set to values similar to
observed coefficients estimated on the real data.

Given the complete set of covariates (X,Z) the probability of being treated was
generated according to:

eij = 1/[1 + exp(β0 + β1X1ij + · · ·+ βkXkij + βk+1Zj)] (1)

and the outcome was generated by the following model:

P (Yij = 1) = 1/[1 + exp(γ0 + γ1X1ij + · · ·+ γkXkij + γk+1Zj + αTij)], (2)

where β = [β0, · · ·βk+1] and γ = [γ0, · · · γk+1] are the vectors of coefficients,
X = (X1, · · ·Xk) is the set of observed individual-level confounders and Z is the
cluster-level confounder. Values of Z are generated as realizations of a normal
variable with µZ = 0 and σZ = 0.25, which is equal to the average standard
deviation of the observed confounders.

Under each scenario, 500 datasets were generated from models (1) and (2). For
each simulated dataset we employed the PSM methods described in the previous
section to obtain a matched subset. The simulation experiments were implemented
in R [10]. In particular, for methods A, D and E we obtained the matched subsets
using the function Match in the package Matching [7]. At the time of writing
neither this package nor others have an option for implementing within-cluster
(B) and preferential within-cluster matching (C) so we programmed a routine that
makes use of the Match function (the code is available from the authors upon
request).

We summarized the results by averaging over the 500 replicates the following
metrics calculated on each dataset: the number and the percentage of unmatched
treated units, the absolute standardized bias (ASB) of each confounder, the esti-

mated treatment effect (ÂTT ), the percent bias of the estimated effect (%BIAS)
and the squared error (SE).

4 Results

Table 1 presents the results of the baseline simulation study introduced in the
previous section. We considered three scenarios by varying the effect of the hospital-
level unobserved confounder in the true treatment assignment model, that is βZ =
{0.2, 0.4, 0.8}. For each scenario, we compare the performance of the five PSM
strategies described in section 3 (A-E) in terms of unmatched units, balance (ASB),
percent bias and mean squared error (MSE). We also report in the first column the
results obtained without any adjustment (“no matching”).

In general, we notice that an unadjusted comparison between treated and con-
trol groups’ outcomes gives strongly biased estimates (relative bias ranging from
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57% to 66%). On the other hand, PSM methods guarantee a considerable reduc-
tion of the bias that tends to increase as the effect of Z increases. However, PSM
methods that take clustering into account (B, C, D and E) achieve a lower bias.

Method C performs particularly well when the effect of Z is low. Otherwise,
the performance of methods B and C is quite similar in terms of relative bias,
but method C has the advantage of reducing the number of unmatched treated
units compared to method B. The pure within-cluster matching, in fact, discards
on average about 55 units (corresponding to about 1% of the treated units) as
compared to less than 1 treated unit that, on average, remains unmatched with
method C. Finally, we notice that there is no substantial difference with respect to
the variability of ATT estimates as measured by the MSE.

Metrics Strategy

No A B C D E
matching

βZ = 0.2
No. unmatched units 0.00 0.62 53.10 0.62 0.82 0.71
% unmatched units 0.00 0.01 0.90 0.01 0.01 0.01
ASB Z 17.90 18.49 0.00 0.25 0.88 1.23
ASB X 13.01 0.95 1.64 1.63 0.93 0.94
ASB All 13.28 1.93 1.55 1.55 0.92 0.96
% Bias 57.42 9.05 3.67 0.61 8.36 8.80
SE 0.0065 0.0035 0.0035 0.0033 0.0034 0.0025

βZ = 0.4
No. unmatched units 0.00 0.81 55.80 0.81 1.45 1.65
% unmatched units 0.00 0.01 0.93 0.01 0.02 0.03
ASB Z 35.72 36.32 0.00 0.35 0.83 0.95
ASB X 12.89 1.04 1.72 1.69 0.99 1.01
ASB All 14.16 3.00 1.62 1.62 0.98 1.00
% Bias 62.76 17.85 2.96 2.62 8.02 8.35
SE 0.0070 0.0038 0.0035 0.0037 0.0036 0.0036

βZ = 0.6
No. unmatched units 0.00 0.93 60.96 0.94 0.84 0.87
% unmatched units 0.00 0.01 0.10 0.01 0.01 0.01
ASB Z 53.03 53.47 0.00 0.62 0.78 0.79
ASB X 12.75 1.15 1.93 1.90 1.08 1.09
ASB All 15.00 4.06 1.83 1.83 1.06 1.07
% Bias 65.88 24.24 2.28 3.78 8.72 7.78
SE 0.0075 0.0042 0.0036 0.0038 0.0037 0.0037

Table 1: Simulation results after propensity score matching with replacement.
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Abstract: Recently, in functional magnetic resonance imaging (fMRI), there has
been an increased interest in quantifying changes in connectivity between brain
regions over an experimental time course to provide a deeper insight into the fun-
damental properties of brain networks. The application of graphical and network
modelling has been instrumental in these analyses and has enabled the examination
of the brain as an integrated system. In this work, we propose a new statistical
method to provide important insights into the time-varying nature of the connec-
tivity of brain regions while subjects are at rest. The novel method uses spectral
clustering to study the network structure between brain regions and uses a non-
parametric metric to detect the change in the structures across time course. The
new method allows for situations where the number of brain regions is greater than
the number of time points in the experimental time course (n < p). This method
promises to offer deeper insight into the inner workings of the whole brain. We
apply this new method to simulated data and to a resting-state fMRI data set.
The temporal features of this novel connectivity method will provide a more ac-
curate understanding of the large-scale characterisations of brain disorders such as
Alzheimers disease and may lead to better diagnostic and prognostic indicators.
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1Universidad Autónoma de Madrid, Spain
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Abstract: The medial axis and the inner parallel body of a set C in the Euclidean
space are different formal translations for the notions of the “central core” and the
“bulk”, respectively, of C. On the basis of their applications in image analysis, both
notions (and especially the first one) have been extensively studied in the literature,
from different points of view. A modified version of the medial axis, called λ-medial
axis, has been recently proposed in order to get better stability properties. The
estimation of these relevant subsets from a random sample of points is a partially
open problem which has been considered only very recently. Our aim is to show
that standard, relatively simple, techniques of set estimation can provide natural,
consistent, easy-to-implement estimators for both the λ-medial axis Mλ(C) and
the inner parallel body Iλ(C) of C. The consistency of these estimators follows
from two results of stability (i.e. continuity in the Hausdorff metric) ofMλ(C) and
Iλ(C) obtained under some, not too restrictive, regularity assumptions on C. As
a consequence, natural algorithms for the approximation of the λ-medial axis and
the λ-inner parallel body can be derived. The whole approach could be useful for
some practical problems in image analysis where estimation techniques are needed.

Keywords: medial axis, set estimation, r-convexity

AMS subject classifications: 62G05

1 Introduction

There is a rich mathematical literature devoted to the study of the “central part”
of a set C in the Euclidean space (which would represent, in statistical terms, the
“median of C”); see [1]. Of course, the first step in any such study must be to
give a precise meaning to this loose notion of “set median”. Different definitions,
closely related but not always equivalent, have been proposed. The most popular
one is perhaps the medial axis of C, M(C), defined as the subset of points in C
having at least two projections on the boundary ∂C. Other closely related (but not
equivalent) usual notions are the skeleton , S(C), (the set of centers of maximal
balls included in C) and the cut locus of C, defined as the topological closure of
M(C); see below for further discussion on these notions. The medial axis was
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introduced by [2] as a tool in image analysis. The papers by [4], [3] and [5], among
many others, analyze these ideas from different points of view.

We are especially concerned with a modified version of the medial axis, called
λ-medial axis, Mλ(C), introduced in [3] to deal with the well-known problem of
instability in the medial axis: the medial axisM(C) andM(D) might be far away
from each other even if the original sets C and D and their boundaries are very
close together; see [4] and references therein. The λ-medial axis leaves out those
points of M(C) whose metric projections on ∂C are too close together.

Another, perhaps less popular, closely related concept is the so-called λ-inner
parallel body, Iλ(C), defined as the set of points in C whose distance to ∂C is at
least λ. So far this concept has been mainly studied in the case where C is convex
[see, e.g., [8]] but we will see that this assumption is not necessary to find a simple
consistent estimator of Iλ(C). The λ-inner parallel body has a simple intuitive
interpretation and is obviously close to the notion of “core” of C. In some cases
it provides an outer approximation to the λ-medial axis. The algorithm proposed
in the paper by [7] for medial axis estimation (under a regression-type sampling
model) relies on an estimate of the inner parallel set.

This work deals with the statistical problem of estimating the λ-medial axis,
Mλ(C), and the λ-inner parallel body, Iλ(C), from a random sample of points
X1, . . . , Xn drawn inside C. The whole approach relies on a simple plug-in idea:
we will use methods of set estimation (see, e.g., [6] for a survey) to get a suitable
estimator Cn = Cn(X1, . . . , Xn) of C. Then the natural estimators ofMλ(C) and
Iλ(C) would be just Mλ(Cn) and Iλ(Cn), respectively.

Whereas the theoretical and practical aspects of the medial axis (and associated
notions) have received a considerable attention, the problem of estimating this set
has been considered only very recently: we refer to the recent paper by [7], though
the sampling model considered by these authors is a bit different to that we will
use here. In short, we will show that imposing an additional shape restriction on C
(called r-convexity) one can obtain, in return, a considerable simplification in the
theory and practice of the estimation of Mλ(C) and Iλ(C).
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gional Development Fund (ERDF) and the IAP research network grant no. P6/03
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Abstract: Statistical inference for spatial and space-time point patterns recorded
e.g. in ecological or epidemiological applications represents a challenging task. The
data consists of a random collection of points {u1, . . . , uN} observed in a compact
observation window W , or, in the space-time setting, a random collection of space-
time events {(u1, t1), . . . , (uN , tN )} observed in W over a time period T . Both the
number of observed points N and their locations are random.

We focus our attention on the space-time clustered point patterns. We discuss
the possibility to use dimension-reduction techniques to fit different parts of a space-
time model separately. Specifically, we define the projections of the process to the
spatial and temporal domain, respectively, and introduce a step-wise estimation
procedure based on these projections. We also discuss the problem of possible
cluster overlapping and the resulting loss of information in the projections and the
challenges it presents for parameter estimation.

Keywords: space-time point process, Cox process, minimum contrast estimation,
K-function, projection process

AMS subject classifications: 62M30, 60G55

1 Introduction

Many fields of science deal with data that are point patterns, such as positions of
trees in a rain forest, maps of disease cases or the locations of point-like defects in
industrial materials. A point pattern consists of a finite set of points {u1, . . . , uN}
observed in a compact observation window W ⊂ Rd. Figure 1 provides an example
of different point patterns. A random process generating such point patterns is
called a point process. Formally speaking, a point process X in Rd is a measurable
mapping from an abstract probability space to the space of locally finite subsets
of Rd. This implies that the number N of points of X ∩W is a random variable.
Also, the locations of the points are random.

The necessity to analyse point patterns arising in practical applications lead
to significant development of the point process theory in the past decades. For
a comprehensive review see [2, 4] or [5]. Parametric point process models enable
detailed statistical inference and hence are sought for in practice.
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Figure 1: Examples of different point patterns. Left: the locations of the centers
of 42 biological cells observed under optical microscopy in a histological section.
Middle: simulated realization of a Poisson point process (see the text). Right:
the locations of 62 seedlings and saplings of California redwood trees in a square
sampling region. The two real point patterns are standard datasets available in
the spatstat package [1] for R.

The basic point process model is the Poisson process. Consider a non-negative
function λ(u), u ∈ Rd. The point process X is called the Poisson process with
intensity function λ if the number of points of X in a Borel set B ⊂ Rd has
a Poisson distribution with mean

∫
B
λ(u) du and the point counts in disjoint Borel

sets are independent random variables. This model exhibits no interaction between
points. For a sample realization see the middle panel of Figure 1.

A natural generalization of the Poisson process is the Cox process. Let Λ(u), u ∈
Rd, be a non-negative random field such that u 7→ Λ(u) is a locally integrable
function with probability 1. If the conditional distribution of the point process X
given Λ = λ is the distribution of the Poisson process with intensity function λ,
X is said to be the Cox process with the driving field Λ [4]. A Cox process is
the model of choice when it comes to analysis of clustered point patterns (such as
the one in the right panel of Figure 1) as it is able to accomodate the attractive
interactions among the points. However, Cox process models are not suitable for
modelling regular patterns such as the one in the left panel of Figure 1.

In this contribution we will focus on the problem of model fitting for clustered
space-time point patterns. In this case each point (sometimes also called event)
of the space-time point process X has a spatial position u ∈ Rd and a temporal
coordinate t ∈ R. In the following we will use (u, t) ∈ X to denote that a point
of X occurs at location u at time t. We assume that the data is observed in a
compact set W ×T ⊂ Rd×R with positive Lebesgue measure where W is a spatial
region observed over the time period T .

We emphasize that we consider a continuous time domain T (not discrete time
instances) and that the events have no duration. Hence (u, t) ∈ X might e.g. in an
epidemiological application correspond to an animal kept on a farm with location u
being reported at time t to be infected.

Furthermore, we remark that analysis of space-time point patterns observed in
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a compact subset of Rd × R requires dedicated methods. It is not appropriate to
use methods for spatial point patterns in Rd+1 – the temporal coordinate plays
a distinct role and cannot be interchanged with the spatial coordinates. For ex-
ample, it is not natural to measure the difference between two space-time events
using the Eucliedean norm in Rd+1.

2 Background

For ease of exposition we restrict our attention to stationary point processes, i.e. the
processes with translation invariant distribution. At first we present the necessary
definitions in the spatial setting and then extend them to the space-time setting.
We also assume that the point process in question is simple, i.e. two points cannot
occur at the same location. For further details [2] can be consulted.

Let X be a stationary point process in Rd. If B is a Borel set in Rd we denote
by |B| its volume and by X(B) the number of points of X in B. The intensity ρ
of X is defined as the expected number of points of X in a set of unit volume, i.e.
ρ = EX(B)/|B| for B with positive volume and ρ does not depend on the choice
of B. We assume ρ > 0.

Furthermore, let du be an infinitesimal region containing the point u ∈ Rd. The
second-order intensity function of X is defined by

ρ2(u, v) = lim
|du|,|dv|→0

E [X(du)X(dv)]

|du| |dv| .

For u 6= v, ρ2(u, v) |du| |dv| can be regarded as the approximate probability that
du and dv both contain a point of X. From the assumption of stationarity of X
we see that, with a slight abuse of notation which is common in the field of spatial
statistics, ρ2(u, v) = ρ2(0, v − u) = ρ2(v − u).

Useful point process characteristics are the pair-correlation function g(u) =
ρ2(u)/ρ2, u ∈ Rd, and the K-function defined by

K(r) =

∫
B(o,r)

g(w) dw, r > 0,

where B(o, r) is the ball centered at the origin o with radius r. We remark that
the value ρK(r) can also be interpreted as the mean number of points from X in
B(o, r) \ {o} provided that there is a point of X in o.

Now we can extend our definitions to the space-time setting. We keep track
of the temporal coordinate of points by explicitely writing (u, t) ∈ Rd × R. It
is straightforward to define the space-time intensity, second-order intensity func-
tion and the space-time pair-correlation function in the same way as above. Now
ρ2((u, t), (v, s)) = ρ2(v − u, s− t) = ρ2g(v − u, s− t).

The definition of the space-time K-function must take into account the principal
difference between the spatial and temporal coordinates. Hence we define

K(r, t) =

∫
B(o,r)

∫ t

−t
g(w, τ) dτ dw, r > 0, t > 0,
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as a function of two arguments – the spatial distance r and the temporal lag t. Now
ρK(r, t) can be interpreted as the mean number of points from X in the cylinder
(B(o, r)× [−t, t]) \ {(o, o)} provided that there is a point of X in (o, o).

3 Model fitting

While the extent of this contribution does not allow us to specify the model in
detail, we have in mind the shot-noise Cox processes [4]. They constitute a wide
and flexible class of models for clustered point patterns. In what follows it is crucial
that the model allows the separation of the first-order parameters (intensity ρ > 0)
and interaction parameters (possibly a vector parameter ψ of the pair-correlation
function g(u, t;ψ)). The model is fully parametrized by (ρ, ψ).

For a general Cox point process it is very difficult to obtain maximum likeli-
hood estimate of the model parameters. The reason is that the likelihood involves
an expectation of a complicated integral term with respect to the distribution of
the random driving field Λ. One can of course take advantage of MCMC or other
techniques and use approximations of the likelihood function [4]. This approach is
usually computationally very demanding and thus faster, simulation-free alterna-
tives based on moment properties are preferred.

For a space-time shot-noise Cox process there is an explicit expression for the
space-time K-function K(r, t;ψ). The non-parametric estimate of the space-time
K-function is

K̂(r, t) =
1

(ρ̂)2 |W × T |

6=∑
(ui,ti),(uj ,tj)∈X∩(W×T )

I(‖ui − uj‖ ≤ r, |ti − tj | ≤ t)
w1(ui, uj)w2(ti, tj)

,

where I is the indicator function, ‖·‖ denotes the Euclidean norm in Rd, w1, w2

are the spatial and temporal edge-correction factors [3], ρ̂ = X(W ×T )/|W ×T | is
the natural non-parametric estimate of the intensity ρ and the summation is over
distinct pairs of points of X.

Now we can use the classical minimum contrast method to find the estimate of
the interaction parameters ψ by minimizing the discrepancy∫ rmax

rmin

∫ tmax

tmin

(K̂(r, t)q −K(r, t;ψ)q)2 dtdr,

for some bounds 0 < rmin < rmax and 0 < tmin < tmax. Here q is a variance
stabilizing coefficient adjusting for the non-constant variance of K̂(r, t). Typical
values of q are 1/4 or 1/2.

However, this approach requires rather large amount of data in order to obtain
stable estimates of K̂(r, t). Based on the idea used in [3] we proposed in [6] to define
the projections of the space-time process X to the spatial and temporal domain,
respectively, and use these projections for estimation. We define

Xs = {u : (u, t) ∈ X, t ∈ T},
Xt = {t : (u, t) ∈ X,u ∈W},
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Figure 2: A sample realization of a space-time point process observed in W × T =
[0, 1]2× [0, 1] (upper left) together with the corresponding spatial projection (upper
right) and temporal projection (below).

i.e. when defining the spatial projection process Xs we keep only the points occur-
ing in the time period T and then disregard their temporal coordinate. Similarly
for the temporal projection process Xt. For a graphical illustration see Figure 2.

In [6] we consider space-time shot-noise Cox processes and we require an addi-
tional assumption of a certain type of second-order separability. It in fact specifies
that the (vector) interaction parameter ψ = (ψs, ψt) involves a spatial interaction
parameter ψs and a temporal interaction parameter ψt and that the space-time
K-function K(r, t) of the process X depends in a separable way on the spatial part
(depending only on ψs and r) and the temporal part (depending only on ψt and t).

Under this assumption it is possible to derive explicit formulae for the K-
function Ks(r;ψs) of the projection process Xs and Kt(τ ;ψt) of Xt, respectively.
Then Ks and Kt can be estimated non-parametrically and we can use minimum
contrast estimation based on Ks in order to estimate ψs and, similarly, minimum
contrast estimation based on Kt in order to estimate ψt. In this way the interaction
parameters are estimated separately and, more importantly, the non-parametric
estimates of Ks and Kt are more stable because by projecting we have reduced the
dimension of the corresponding space.
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4 Challenges

An interesting problem is caused by possible overlapping of clusters of points in
the data. Even clusters which were originally clearly separated in the space-time
domain may overlap in the spatial or temporal projection, making it more difficult
to estimate the interaction parameters. This problem is more pronounced in the
temporal projection process where we project from Rd × R to R only.

A consequence of the cluster overlapping problem is that increasing the amount
of observed data may not in general result in more precise estimates of the interac-
tion parameters. Consider for example a fixed spatial domain W and an increasing
sequence of time intervals Tn = [0, n]. If we use Tn to define a sequence of spatial

projection processes X
(n)
s , the intensity ρ

(n)
s of X

(n)
s would increase unboundedly.

This implies more and more cluster overlapping in X
(n)
s . It can be proved formally

that in the limit the influence of the spatial interaction parameter ψs is lost and
it cannot be identified from Ks. The situation is analogous if we consider a fixed
time period T and an increasing sequence of spatial regions Wn.

This makes it difficult to find appropriate asymptotic regime for this estimation
problem and to formulate conditions under which consistency and asymptotic nor-
mality of the resulting estimators hold. We conclude this contribution by a remark
that it is in fact possible to formulate asymptotic results but different normalization

(by |Wn|1/2 or |Tn|1/2) is required for ψ̂s and ψ̂t, respectively.

Acknowledgements: The author would like to express his gratitude to his former
supervisor RNDr. Michaela Prokešová, Ph.D., for her never-ending enthusiasm,
patience and support.
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Abstract: In this work, we developed a novel time series model in the context of
designed experiments that captures two sources of nonstationarities: 1) over time
within a trial of the experiment and 2) across the trials of the experiment. Under
the proposed model we construct spectral measures that change with respect to
both sources of nonstationarities. To estimate the evolving evolutionary spectral
density matrix, we used a two-stage procedure. In the first stage, we computed the
within-trial time-localized periodogram matrix. In the second stage, we developed
a data-driven approach for combining information across trials from the local pe-
riodogram matrices. We assessed the performance of our proposed method using
simulated data.

Keywords: multivariate time series, cross-coherence, local stationarity, spectral
analysis

AMS subject classifications: 62M10, 62P10

1 Introduction

The context of our work is in neuroscience experiments where nonstationary time
series data are collected. Often in the experiment a stimulus is presented numerous
times, and so the data set consists of a collection of many nonstationary multivari-
ate time series across the trials of the experiment. However, existing methodology
for spectral analysis of nonstationary time series data will assume that the data
across the trials are identical realizations of the same underlying process. This is
not necessarily the case in practice. Indeed, the variability across trials may arise
from the subject changing performance strategy, reduced neuronal activity poten-
tially caused by habituation to the stimulus, or other neurophysiological processes
[1, 2]. While many statistical models take into account nonstationarity within a
single trial, there is certainly a need for statistical methodologies to account for the
nonstationarity over the course of the experiment in order to give a more accurate
characterization of the underlying dynamics of the data.
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2 The evolving evolutionary spectrum

We begin with our statistical model that captures the two sources of nonstation-
arities. Our modeling framework is inspired by the work of Dahlhaus (2000) [3]
on locally stationary processes (LSP) but we go further by modeling the dynamics
across an entire experiment rather than just within a single trial. The following
model was first developed by Fiecas and Ombao (2014) and used to study local
field potentials collected during an associative learning experiment [4]. We refer
the reader to that work for more details and discussion.

Definition 1. A sequence of locally stationary zero-mean P -variate time series Xt,r

where r = 1, . . . , R denotes the trials within the entire experiment and t = 1, . . . , T
denote the time points within a trial is said to follow a slowly evolving locally
stationary process (SEv-LSP) if it admits the representation

Xt,r =

∫ 0.5

−0.5

A(t/T, r/R, ω) exp(i2πωt)dZr(ω),

where:

1. Zr(ω) is a zero-mean P -variate orthogonal increment process on [−0.5, 0.5]
with Zr(ω) = Zr(−ω), Zr(ω) is uncorrelated with Zr′(ω) for r 6= r′, and

cum(dZr(ω1), . . . , dZr(ωk)) = η(

k∑
j=1

ωj)Λk(ω1, . . . , ωk−1)dω1 · · · dωk,

where cum(·) denotes the k-th order cumulant, Λ1 = 0,Λ2 = IdP , where IdP
is the P ×P identity matrix, |Λk(ω1, . . . , ωk−1)| ≤ Ck where Ck is a constant,
Λ4 is continuous, and η(ω) =

∑∞
j=−∞ δ(ω + j) is the periodic extension of

the Dirac delta function, and

2. For each (u, v, ω) ∈ [0, 1] × [0, 1] × [−0.5, 0.5], the complex-valued trans-
fer function denoted A(u, v, ω) (of dimension P × P ) has continuous sec-
ond partial derivatives with respect to u, v, and ω, and ∂lA(u, v, ω)/∂ωl =

∂lA(u, v,−ω)/∂ωl for l = 0, 1.

Definition 2. The evolving evolutionary spectral density matrix, with dimension
P × P , defined at rescaled time u ∈ [0, 1] within rescaled trial-time v ∈ [0, 1] and
at frequency ω ∈ [−0.5, 0.5] is

f(u, v, ω) = A(u, v, ω)A(u, v, ω)∗,

where (*) denotes the conjugate transpose.

In spectral analysis, a popular approach for investigating the linear dependence
between two time series is via cross-coherence analysis. Cross-coherence is analo-
gous to cross-correlation but is frequency specific, i.e., it measures the strength of
linear association between two time series at a particular frequency.
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Definition 3. The evolving evolutionary coherence between dimensions p and q of
a SEv-LSP Xt,r is

ρ2
pq(u, v, ω) =

∣∣∣∣∣ f(u, v, ω)pq√
f(u, v, ω)ppf(u, v, ω)qq

∣∣∣∣∣
2

,

where f(u, v, ω)pq is the (p, q)-th element of f(u, v, ω).

Our estimation approach begins with a trial-specific periodogram matrix that
is localized in time within a trial. Let {uj}Bj=1 be an increasing sequence in (0, 1)
and ε ∈ (0, 1) such that we have a collection of subintervals of rescaled time [uj −
ε, uj + ε] ⊂ [0, 1]. Next let Bj = {[(uj − ε)T ], . . . , [(uj + ε)T ]}, where [·] is the
greatest integer function, be the j-th time block having midpoint [ujT ] and size
|Bj | = [2εT ]. Without loss of generality, we assume |Bj | to be even. To construct
the r-th trial time-localized periodogram matrix, first let dj,r(ω) be the discrete
Fourier transform of Xt,r restricted to the j-th block:

dj,r(ωk) = |Bj |−1/2
∑
t∈Bj

Xt,r exp(−i2πωkt),

where ωk = k/|Bj |, k = −|Bj |/2, . . . , |Bj |/2− 1, are the Fourier frequencies. Then
the r-th trial time-localized periodogram matrix at rescaled time uj and frequency
ωk is Ij,r(ωk) = dj,r(ωk)dj,r(ωk)∗.

For any u, v ∈ [0, 1], Ij,r(ω) is an asymptotically unbiased estimator, but not
consistent, for f(u, v, ω). For locally stationary time series, a popular solution
is to smooth over frequencies. To obtain a consistent estimator while maintaining
frequency resolution, we instead take advantage of the slow evolution of the process
over the entire experiment by smoothing across trials, i.e., our estimator for the
evolving evolutionary spectral density matrix is the time-localized periodogram
matrix smoothed across trials, given by

f̂
(Mjk)
j,r (ωk) = (2Mjk + 1)−1

Mjk∑
s=−Mjk

Ij,r+s(ωk),

for some positive integer Mjk. We pick each Mjk, j = 1, . . . , B and k = −|Bj |/2,
. . ., |Bj |/2−1 to optimize some criterion. We refer the reader to Fiecas and Ombao
(2014) for a data-driven method for selecting each Mjk [4]. By smoothing across
trials instead of over frequencies, we do not lose frequency resolution, and we will be
able to investigate the evolution of the spectral properties of the data from one trial
of the experiment to the next. From here, we can extract the approporiate elements
of the matrix to obtain an estimator for the evolving evolutionary coherence. Under
mild regularity conditions, one can show that our estimators are consistent [4].

3 Simulation study

In this simulation study we simulated bivariate time series for R trials that slowly
evolved from one trial to the next. To this end, we first created a 2×2 matrix-valued
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function Ψ(u, v, ω), whose elements are

ψ11(u, v, ω) = (v + 0.5)[{1.2 cos(πω)}2 + 0.4 sin(2πuT ) + 0.7],

ψ21(u, v, ω) = 0.6 cos(2πω) + 0.4 cos(2πuT ) + 1+

i0.4 sin(2πω){4(uT − 0.5)2 + 0.5},
ψ12(u, v, ω) = 0

ψ22(u, v, ω) = {1.3 cos(2πω)}2 + 0.4 sin(2πuT ) + 0.8.

From Ψ(u, v, ω), we simulated time series data with T = 512 or T = 1024, and
R = 100 or 250 by

Xt,r =

T/2−1∑
k=−T/2

Ψ(t/T, r/R, k/T ) exp(i2πkt/T )Zr(k),

where {Zr(k), k = −T/2, . . . , T/2 − 1, and r = 1, . . . , R} are independent such
that for k/T /∈ {0,±0.5}, the distribution of Zr(k) was bivariate complex nor-
mal with zero mean and covariance matrix T−1Id, and for k/T ∈ {0,±0.5}, the
distribution of Zr(k) was bivariate real normal with zero mean and covariance
matrix T−1Id. For each r = 1, . . . , R, Xt,r is a LSP with spectral density matrix
f(t/T, r/R, k/T ) = Ψ(t/T, r/R, k/T )Ψ(t/T, r/R, k/T )∗ [5]. Note that the evolving
evolutionary power spectrum f11(u, v, ω) slowly changed over v, but the evolving
evolutionary power spectrum of the second dimension f22(u, v, ω) and the evolving
evolutionary coherence ρ2

12(u, v, ω) were constant over v.
The parameter settings in our estimation procedure to estimate the evolving

evolutionary spectral properties of the simulated data were as follows. We con-
structed the local periodogram matrices using blocks in time that have 64 time
points, and these blocks were overlapping by setting [T (uj − uj−1)] = 8 for all
blocks j. We also investigated the effects of block sizes and step sizes, and the
results were similar.

We summarize the results of our simulation study by computing the mean
squared error with respect to the Hilbert-Schmidt norm of the estimate of the
evolving evolutionary spectral density matrix at each point on the time-frequency
grid for each trial, and then averaging over each discrete time-frequency point and
across the trials. These simulation results are in Table 1. The LSP model does
not account for the evolution over trials, hence the high bias relative to the SEv-
LSP model. On the other hand, the LSP model has lower variance because it
averages over the entire experiment. The SEv-LSP model averages locally over
trials, hence, the higher variance relative to the LSP model. The higher MSE of
the LSP, therefore, was driven primarily by the biased estimates as a result of not
accounting for the evolution of the spectral density matrix over the trials.
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1 Introduction and main result

For Rd-valued Markov process Xt, t ≥ 0 and some function h the following objects
are considered:

1) an integral-type functional

IT (h) =

∫ T

0

h(Xt) dt;

2) an approximative sequence of integral sums

IT,n(h) =
T

n

n−1∑
k=0

h(X(kT )/n), n ≥ 1.

In what follows, Px denotes the law of the process X, conditioned by X0 = x,
Ex denotes the correspondent expectation w.r.t. this law. Both the absolute value
of a real number and an Euclidean norm in Rd are denoted by | · |. ‖ · ‖ stands for
the sup-norm.

The only assumption on the process X is the following.
X. The process X possesses a transition probability density pt(x, y), which is

differentiable w.r.t. t and satisfies∣∣∣∂tpt(x, y)
∣∣∣ ≤ CT t−1−d/αQ

(
t−1/α(x− y)

)
, t ≤ T, CT ≥ 1, (1)

with some α ∈ (0, 2] and some distribution density Q.

∗Corresponding author: iurii ganychenko@ukr.net
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Remark 1. For instance, Brownian motion and multidimensional diffusions sat-
isfy the assumption X for α = 2 and Q(x) = c1 exp(−c2|x|2) with some c1, c2.
Symmetric alpha-stable process satisfies this assumption for any α ∈ (0, 2] and

Q(x) =

{
c1e
−c2|x|2 , α = 2,
c

1+|x|d+α , α ∈ (0, 2),
. We refer the reader to [1] for more details.

Our research is based on the following result (see Proposition 2.1 [1]).

Proposition 6. Let assumption X holds and h is bounded. Then there exists a
positive constant C, such that∣∣∣ExIT (h)− ExIT,n(h)

∣∣∣ ≤ C log n

n
. (2)

In other words, under some conditions on the process X, the rate of approx-
imations of expectations of a given integral functional of such a process is well-
controlled. Such rates are called weak rates.

One can find some generalizations of Proposition 6 in recent researches. One of
various approaches there is an obtaining of such a weak rate (2), but in the case,
where the process X is also approximated, not only the limited functional. Such
a result is obtained in [2] (see Theorem 2.5). Completely different approach to
generalize the result of Proposition 6 is studied in [4] and [1]: so-called strong rates
are obtained there, i.e. the bounds for

Ex

∣∣∣IT (h)− IT,n(h)
∣∣∣p.

We introduce our main result below.

Theorem 4. Let X hold and h is bounded. Then for any k ∈ N and bounded
function f :∣∣∣Ex(IT (h))kf(XT )− Ex(IT,n(h))kf(XT )

∣∣∣ ≤ 6k2CTT
k‖h‖k

(
log n

n

)
· ‖f‖.

Remark 2. Proposition 6 follows from Theorem 4 if k = 1 and f ≡ 1.

Therefore, Theorem 4 generalizes the result of Proposition 6 simultaneously
in two ways. Firstly, we control an approximation rate of the integral functional
powered by any k. Secondly, we add a test function of the last-time point.

The next corollary is quite important.
Let us consider any analytical function g, which is defined in some neighbour-

hood of 0, and constants Dg, Rg > 0, such that for any natural m :
∣∣∣ g(m)(0)

m!

∣∣∣ ≤
Dg ·

(
1
Rg

)m
.

Theorem 5. Let X holds and f is such that T‖h‖ < Rg. Then for each bounded
f we have:∣∣∣Exg(IT (h))f(XT )− Exg(IT,n(h))f(XT )

∣∣∣ ≤ CT,h,Dg,Rg ( log n

n

)
· ‖f‖, (3)

where

CT,h,Dg,Rg = 6DgCT
T‖h‖
Rg

·
(

1 +
T‖h‖
Rg

)
· 1(

1− T‖h‖
Rg

)3 .
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2 Applications

2.1 On approximation of Feynman-Kac semigroup

Let X· ≡ Z· be a Brownian motion valued in Rd. Then the assumption X holds
for α = 2 and Q(x) = c1 exp(−c2|x|2) with some c1, c2 (see [1] for more details).
Therefore, the transition probability density is defined by:

pt(x, y) =
1

(2πt)d/2
exp

(
−|y − x|

2

2t

)
, t > 0, x, y ∈ Rd.

We define a semigroup in Cb(Rd) by the formula

Exf(Zt) := Rtf(x) =

∫
Rd
pt(x, y)f(y)dy

and denote its generator by A. If additionally f ∈ S(Rd) (the space of rapidly
decreasing functions), then A is a Laplace operator.

Then the formula

Rht f(x) = Ex [f(Zt) exp {λIt(h)}]

defines a semigroup on Cb(Rd) with its generator given in the form

Ahf = Af + λhf

(see [6], Chapter 1).
We put

Rht,nf(x) = Ex [f(Zt) exp {λIt,n(h)}]
and provide the following corollary of Theorem 4.

Theorem 6. For each bounded functions f, h and λ > 0 the following estimate
holds: ∣∣∣Rht f(x)−Rht,nf(x)

∣∣∣ ≤ CT,λ,h( log n

n

)
· ‖f‖,

where
CT,λ,h = 6CTλ‖h‖T · (1 + λ‖h‖T ) · exp{λ‖h‖T}.

Therefore, the main result allows to control the rate of approximations of
Feynman-Kac semigroup with the accuracy (log n)/n.

2.2 On approximation of the price of an occupation time
option

We do not assume any smoothness conditions on the function h. Therefore, the
important particular case of h being an indicator function and IT (h) being respec-
tively an occupation time can be considered in scopes of our approach. It allows us
to apply the main result to pricing the options, which price depends on the time
spent by the process X in some defined set.
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In what follows, we put d = 1.
Let the price of an asset S = {St, t ≥ 0} be of the form:

St = S0 exp(Xt).

Then the time spent by the process S in a set J ⊂ R (or the time spent by X
in a set J ′ ⊂ R), from time 0 to time T , is defined by∫ T

0

I{St∈J}dt =

∫ T

0

I{Xt∈J′}dt.

We consider the options, which price depends on the time that the process
S spend in the set J . Such kind of options is introduced in [5] and called an
occupation time option. Comparing to the standard barrier options, which activated
or cancelled when S hits some defined level (barrier), the payoff of the occupation
time option depends on a time that the process S stays below or above such a
barrier.

For instance, for the strike price K, the barrier L and the knock-out rate ρ, the
payoff of a down-and-out call option is given by:

exp

(
−ρ
∫ T

0

I{St≤L}dt

)
· (ST −K)+.

Then its price C(T) is given by

C(T ) = exp(−rT )E

[
exp

(
−ρ
∫ T

0

I{St≤L}dt

)
· (ST −K)+

]
,

where r is the risk-free interest rate (see [5]).
The problem of such a price estimate is solved in [3] for Lévy process with

negative jumps. And the approach is strongly dependent on the process structure.
We put

Cn(T ) = exp(−rT )E

[
exp

(
−ρT/n

n−1∑
k=0

I{SkT/n≤L}dt

)
· (ST −K)+

]
,

and provide another corollary of Theorem 4.

Theorem 7. Let X holds and there exists u > 1, such that G := E exp(uXT ) =
ESuT < +∞. Then∣∣∣Cn(T )−C(T )

∣∣∣ ≤ 3 max{CT,ρ,h, G} exp(−rT )

(
log n

n1−1/u

)
,

where CT,ρ,h is the same as in Theorem 3 and h is an indicator function.

Therefore, our main result allows to control the rate of approximations of C(T )
by Cn(T ) with the accuracy (log n)/n1−1/u for the class of Markov processes which
satisfy the assumption X with E exp(uXT ) < +∞.
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9 Rue Alain Savary, 21078 Dijon, France

Abstract: The geometric median, also called L1-median is often used in statistics
because of its robustness. Moreover, it is more and more usual to deal with large
sample taking values in high dimensional spaces. In this context, a fast estimator
of the median has been introduced by [2] which consists in an averaged stochastic
gradient algorithm. We propose to give a deep study of these estimators. We also
define a new robust dispersion matrix (closely related to the median) called Median
Covariation Matrix as well as algorithms to estimate it. This matrix can be very
interesting in robust Principal Components Analysis. Indeed, under assumptions,
it has the same eigenspaces as the covariation matrix, but it is less sensitive to
outliers.
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1 Introduction

The geometric median, also called L1-median, is a generalization of the real median
introduced by [7]. In the multivariate case, it is closely related to the Fermat-
Webber’s problem, which consists in finding a point minimizing the sum of distances
from given points. This is a well known convex optimization problem. Many
properties of the median are given by [8] in Banach spaces, such as its existence,
uniqueness and robustness. This last property is one of the principal factors of
interest about the median. Moreover, [4] propose a deep study estimators of the
median in the general case of Banach spaces.

Many algorithms for estimating the median exist in the literature, and one of
the most used in the multivariate case, is the one introduced by [10], which consists
in solving the Fermat-Webber’s problem generated by the sample with Weizfeld’s
algorithm. Nevertheless, this last algorithm can be difficult to compute when we
have to deal with large data taking values in high dimensional spaces. This is why
we will focus on the algorithm introduced by [2] which has the same asymptotic
distribution, and which consists in a stochastic gradient algorithm and its averaged
version.

∗Corresponding author: Antoine.Godichon@u-bourgogne.fr
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Moreover, we will speak about the Median Covariation Matrix (MCM), which
is studied by [9]. This is a robust indicator of dispersion closely related to the
median, which can be used in robust PCA (see
[3] for example). Indeed, under weak conditions, if the distribution of the data we
would like to study is symmetric, then the MCM has the same eigenspaces as the
usual covariance matrix. As mentioned in
[3], many algorithms exist to estimate this indicator, but we will focus on a com-
pletely recursive one in order to be able to deal with big data. This algorithm
consists in estimating both the median and the MCM with stochastic gradient
algorithms and their averaged versions.

In this report, we first define the median and give some assumptions before
recalling the algorithms introduced by [2]. We also give some results due to [1] and
[6] on their asymptotic behavior. Finally, we will define the Median Covariation
Matrix and recall the recursive algorithms introduced by [3], before giving their
rates of convergence in quadratic mean.

2 Estimating the geometric median

2.1 Definition and assumptions

Let us consider a random variable X taking values in a separable Hilbert space H
(not necessarily with a finite dimension). We denote by 〈., .〉 its inner product and
‖.‖ the associated norm. The geometric median m of X is defined by

m := arg min
h∈H

E [‖X − h‖ − ‖X‖] .

We now introduce two assumptions:

(A1) X is not concentrated on a straight line: for all h ∈ H, there is h′ ∈ H such
that 〈h, h′〉 = 0 and

Var (〈X,h′〉) > 0.

(A2) X is not concentrated around single points: there is a positive constant C
such that for all h ∈ H,

E

[
1

‖X − h‖2

]
≤ C.

Note that assumption (A1) ensures that the median is uniquely defined (see [8]),
and assumption (A2) enables to give some convexity properties such as the twice
differentiability of the function we would like to minimize.

2.2 The algorithms

Let G be the function we would like to minimize. It is defined for all h ∈ H by

G(h) := E [‖X − h‖ − ‖X‖] .
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An important fact is that under assumption (A2) G is convex and is Frchet-
differentiable. Its gradient is given for all h ∈ H by

∇G(h) = −E
[
X − h
‖X − h‖

]
.

This legitimates the fact to use a stochastic gradient (or Robbins-Monro) algorithm.
Let us now consider independent random variables X1, ..., Xn, ... with the same law
as X. We recall the Robbins-Monro algorithm introduced by [2]:

mn+1 = mn + γn
Xn+1 −mn

‖Xn+1 −mn‖
, (1)

with m1 chosen bounded. The step sequence (γn) is a decreasing sequence of pos-
itive real numbers, and verifies the following usual conditions (see [5] for example)∑

n≥1

γn = +∞,
∑
n≥1

γ2
n <∞.

The averaged version of the algorithm is defined recursively by

mn+1 = mn +
1

n+ 1
(mn+1 −mn) , (2)

with m0 = 0, which can be written as mn = 1
n

∑n
k=1mk.

2.3 Rate of convergence

The strong consistency of these algorithms is given in [2]. We now consider a step
sequence of the form γn := cγn

−α, with cγ > 0 and α ∈ (1/2, 1). Then, we have
the following rates of convergence of the Robbins-Monro algorithm.

Theorem 8. Suppose assumptions (A1) and (A2) are fulfilled. There is a positive
constant C ′ such that for all n ≥ 1,

E
[
‖mn −m‖2

]
≤ C ′

nα
.

More generally, for all integer p ≥ 1, there is a positive constant Kp such that for
all n ≥ 1,

E
[
‖mn −m‖2p

]
≤ Kp

npα
.

With the help of previous rates, one can obtain the following rates for the
averaged algorithm.

Theorem 9. Suppose assumptions (A1) and (A2) are fulfilled. There is a positive
constant C ′′ such that for all n ≥ 1,

E
[
‖mn −m‖2

]
≤ C ′′

n
.

More generally, for all integer p ≥ 1, there is a positive constant Kp′ such that for
all n ≥ 1,

E
[
‖mn −m‖2p

]
≤ K ′p
np

.
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3 Estimating the Median Covariation Matrix

3.1 Definition and assumptions

We now consider a separable Hilbert space H and the space of linear operators
mapping H to H, denoted by S(H). Let (ej)j∈J be a basis of H, we equippe S (H)

with the following inner product: let A,B ∈ S(H),

〈A,B〉F =
∑
j∈J
〈A(ej), B(ej)〉 .

Thus, S(H) is also a separable Hilbert space and the norm associated to the previ-
ous inner product, denoted by ‖.‖F , is the well known Hilbert-Schmidt (or Froebe-
nius) norm.

Let X be a random variable taking values in H, the Median Covariation Matrix
Γm of X is defined by

Γm := arg min
V ∈S(H)

E
[∥∥(X −m)T (X −m)− V

∥∥
F
−
∥∥(X −m)T (X −m)

∥∥
F

]
, (3)

where m is the median of X. The Median Covariation Matrix Γm can be seen as
the geometric median of the random variable (X −m)T (X −m), and is so robust.
We now introduce two assumptions:

(A3) For all V ∈ S(H), there is V ′ ∈ S(H) such that 〈V, V ′〉H = 0 and

Var
(〈

(X −m)T (X −m), V ′
〉
F

)
> 0.

(A4) There is a positive constant C such that for all h ∈ H and V ∈ S(H),

E

[
1

‖(X − h)T (X − h)− V ‖2F

]
≤ C.

Note that assumption (A4) implies assumption (A2). Under assumptions (A1)
and (A3), the Median Covariation Matrix is uniquely defined.

3.2 The algorithms

In the particular case when the median m is known, the algorithms and their
asymptotic properties are analogous to the ones for the estimation of the median.
We consider from now that m is not known and for all h ∈ H, let Gh be the
functional defined for all V ∈ S(H) by

Gh(V ) := E
[∥∥(X − h)T (X − h)− V

∥∥
F
−
∥∥(X − h)T (X − h)

∥∥
F

]
.

One can check that Gm is the function we would like to minimize. These functional
are Frchet-differentiable and their gradients are defined for all V ∈ S(H) by

∇Gh(V ) = −E
[

(X − h)T (X − h)− V
‖(X − h)T (X − h)− V ‖F

]
.
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Then we can now introduce a ”stochastic gradient algorithm” and its averaged
version. Let X1, ..., Xn, ... be independent random variables with the same law as
X. The stochastic gradient estimator Vn and its averaged version V n are defined
recursively by

mn+1 = mn + γn
Xn+1 −mn

‖Xn+1 −mn‖
,

mn+1 = mn +
1

n+ 1
(mn+1 −mn) ,

Vn+1 = Vn + γn
(Xn+1 −mn)T (Xn+1 −mn)− Vn
‖(Xn+1 −mn)T (Xn+1 −mn)− Vn‖F

, (4)

V n+1 = V n +
1

n+ 1

(
Vn+1 − V n

)
, (5)

with m1 and V1 chosen bounded, m0 = 0, V 0 = 0.

3.3 Rates of convergence

We now consider a step sequence of the form γn := cγn
−α, with cγ > 0 and

α ∈ (1/2, 1). Then, we have the following rates of convergence for the stochastic
gradient algorithm:

Theorem 10. Suppose assumptions (A1) to (A4) hold. There is a positive con-
stant K such that for all n ≥ 1,

E
[
‖Vn − Γm‖2F

]
≤ K

nα
.

Moreover, for all β ∈ (α, 2α), there is a positive constant Kβ such that for all
n ≥ 1,

E
[
‖Vn − Γm‖4F

]
≤ Kβ

nβ
.

Finally, the following theorem gives the rate of convergence in quadratic mean
of the averaged estimator.

Theorem 11. Suppose assumptions (A1) to (A4) hold. There is a positive con-
stant K ′ such that for all n ≥ 1,

E
[∥∥V n − Γm

∥∥2

F

]
≤ K ′

n
.

Acknowledgements: This work is a resume of three paper written in collabora-
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Abstract: We perform inference for the sparse and potentially high-dimensional
parametric part of a partially linear single-index model. We construct a desparsified
version of a penalized estimator for which asymptotic normality can be proven.
This allows us to take the uncertainty associated with the variable selection process
into account and to construct confidence intervals for all the components of the
parameter.
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estimator, single-index model
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1 Introduction

In the last decades, high-dimensional data have increasingly become available, lead-
ing to the development of new statistical methodologies. Such data are character-
ized by the number of variables being larger than the number of observations,
which makes classical statistical tools such as least-squares estimation unsuitable.
In order to tackle this difficulty, sparsity is often assumed, meaning that only a
few variables suffice to explain the model. This sparsity assumption has led to
the development of penalized regression techniques including the Lasso [6] and the
SCAD [1].

Much work has been done on point estimation properties such as consistency in
prediction and in variable selection, in particular for the Lasso estimator. A major
drawback of the penalized estimators is that, due to their sparse structure, we
can only characterize the distribution of their active set of variables. This means
that the uncertainty associated with the variable selection process is completely
ignored. Construction of confidence intervals is thus directly possible only for the
components that were not shrunk to zero, which can lead to wrong inference. To
tackle this problem, [5] construct a desparsified version of the Lasso estimator for
which asymptotic normality is proven for the generalized linear model family.

In this paper we extend this idea of desparsifying the lasso to the partially
linear single-index model Y = η0(ZTα)+XTβ+ε, where η0(·) is a one-dimensional
unknown function. This model is a natural extension of the linear model to include
non-parametric effects. Compared to the additive non-parametric model, it has

∗Corresponding author: thomas.gueuning@kuleuven.be
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the advantage to require the estimation of only one unknown function, overcoming
the so-called curse of dimensionality. Details of the usefulness of this model can
be found in [3]. We describe in section 2.1 a method for the estimation of the
parametric part (α, β) and of the non-parametric part η0(·) introduced by [4]. In
case of high-dimensional data or if some sparsity is expected, a penalized estimator
can be obtained. In section 2.2, we show how to construct a desparsified version
of the penalized estimator and state its asymptotic normality. This allows us to
perform inference for all the components of the parametric part (α, β). Section
2.3 summarizes our methodology and section 3 assesses finite sample performance
through a simulation study.

2 The partially linear single-index model: estima-
tion and inference on the parametric part

Let {(Yi, Xi, Zi), i = 1, . . . , n} be a sample generated by the partially linear single-
index model

Y = η0(ZTα0) +XTβ0 + ε,

where (Z,X) ∈ Rp×q are the covariate vectors associated with the response variable
Y , η0(·) is the unknown link function of the single-index ZTα0, ε ∼ N(0, σ2

ε ) is the
error term and α0 ∈ Rp and β0 ∈ Rq are unknown parameters to estimate. For
identifiability reasons, we assume that

∥∥α0
∥∥ = 1 and that the first non-zero entry

of α0 is positive. If p + q > n, the framework is high-dimensional. We use the
notation ξ0 = (α0, β0) ∈ Rp+q for the parameter vector.

2.1 Estimation of the parameters and of the function η0

Several estimation techniques have been introduced in the last two decades, includ-
ing the backfitting algorithm. We use the profile least-squares approach introduced
by [4] where the local linear regression technique is used to estimate the unknown
function η0. In concrete terms, given a value of (α, β) of the parameter vector we
estimate η0 and its derivative η′0 at a point u ∈ R as

(η̂0(u), η̂′0(u)) = arg min
(a,b)∈R2

n∑
i=1

(a+ b(ZTi α− u) +XT
i β − Yi)2Kh(ZTi α− u) (1)

where Kh(·) = h−1K(·/h) with K(·) a kernel function and h a bandwidth. The
idea underlying (1) is to use the first order approximation η0(ZTi α) ≈ η0(u) +
η′0(u)(ZTi α − u) for ZTi α close to u. For every value of the parameter ξ = (α, β)
we thus have an estimator η̂(u, ξ) of η0(u), explicitly obtained as

η̂(u, ξ) = â =
K20(u, ξ)K01(u, ξ)−K10(u, ξ)K11(u, ξ)

K00(u, ξ)K20(u, ξ)−K2
10(u, ξ)

, (2)

where Kjl(u, ξ) =
∑n
i=1Kh(ZTi α − u)(ZTi α − u)j(XT

i β − Yi)l for j = 0, 1, 2 and
l = 0, 1. We obtain a profile least-squares estimator by the minimization of

Q(α, β) =
1

2n

n∑
i=1

(Yi − η̂(ZTi α;α, β)−XT
i β)2. (3)
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If the parameter vector (α, β) is expected to be sparse, we can add a penalty
term such as used for the SCAD, the Lasso or the adaptive Lasso. We define the
Lasso estimator ξ̂ = (α̂, β̂) as the minimizer of

L(α, β) =
1

2n

n∑
i=1

(Yi − η̂(ZTi α;α, β)−XT
i β)2 + λ ‖α‖1 + λ ‖β‖1 . (4)

Note that different tuning parameters could be used to penalize differently on
α and on β. It is also possible to linearize η̂(ZTi α;α, β) using an initial value (α̃, β̃)
in order to make the optimization program computationally more efficient.

2.2 Inference on the parameter via a desparsifying process

With the Lasso penalty term replaced by the SCAD function, the asymptotic nor-
mality of the non-zero coefficients of the estimator obtained by the minimization
of L(α, β) is proven by [4]. This allows to perform inference on the non-zero co-
efficients selected by the SCAD but does not take into account the variability
associated with the variable selection process. Some coefficients could be wrongly
shrunk to zero and no statistical inference could be done on these ones. To tackle
this problem we propose to use a technique introduced by [5], which consists of
desparsifying the penalized estimator. We establish the asymptotic normality of
the desparsified estimator, which allows us to construct confidence intervals for all
the components of the estimator, and not only for the active set of variables. We
are then able to detect components which were wrongly set to zero. We now show
how we construct our desparsified estimator.

Let ξ̂ = (α, β) be the minimizer of (4) and let us define

Xi,ξ̂ =

[
∂
∂α η̂(ZTi α;α, β)|(α̂,β̂)
∂
∂β η̂(ZTi α;α, β)|(α̂,β̂) + Xi

]

and

Σ̂ξ̂ =
1

n

n∑
i=1

Xi,ξ̂X
T
i,ξ̂
.

We define Θ̂ξ̂ as being a relaxed inverse of Σ̂ξ̂. Two ways to construct this relaxed

inverse are described in [2]. We define the desparsified estimator ξ̂desp as follows:

ξ̂desp = ξ̂ + Θ̂ξ̂

[
1

n

n∑
i=1

Xi,ξ̂

(
Yi − η̂(ZTi α̂; α̂, β̂)−XT

i β̂
)]

. (5)

The idea underlying this construction is the following. Given that (α̂, β̂) minimizes
(4), we have the Karash-Kuhn-Tucker condition

1

n

n∑
i=1

Xi,ξ̂(Yi − η̂(ZTi α̂; α̂, β̂)−XT
i β̂) = λκ̂
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with ‖κ̂‖∞ ≤ 1 and κ̂j = sign(ξ̂j). Then by using the equality Yi = XT
i β0 +

η0(ZTi α)+εi and the approximation η̂(ZTi α̂; α̂, β̂) ≈ η̂(ZTi α0;α0, β0)+ ∂η̂
∂ξ |(α̂,β̂).(ξ̂−

ξ0), we obtain

1

n

n∑
i=1

Xi,ξ̂

[
−XT

i,ξ̂
(ξ̂ − ξ0) + εi + η0(ZTi α)− η̂(ZTi α0;α0, β0)

]
≈ λκ̂.

Now, using the fact that Θ̂ξ̂ is a relaxed inverse of 1
n

∑n
i=1Xi,ξ̂X

T
i,ξ̂

, we have

−(ξ̂ − ξ0) + Θ̂ξ̂

[
1

n

n∑
i=1

Xi,ξ̂

(
εi + (η0(ZTi α

0)− η̂(ZTi α0;α0, β0))
)]

≈ Θ̂ξ̂

[
1

n

n∑
i=1

Xi,ξ̂

(
Yi − η̂(ZTi α̂; α̂, β̂)−XT

i β̂
)]

.

We recognize the definition of ξ̂desp and see that ξ̂desp − ξ0 can be approximated
by the sum of a Gaussian term and a term tending to zero.

Theorem 12. Let ξ̂ be the Lasso penalized estimator, obtained by the minimization
of the penalized profile least-squares (4). Let ξ̂desp be obtained by the desparsifying

process (5) where Θ̂ξ̂ is obtained by the nodewise regression technique. Assume that

conditions (C1) to (C10) of [2] do hold. Then, for each j ∈ {1, . . . , p+ q} we have:

√
n(ξ̂desp

j − ξ0
j )

σ̂j
= Vj + oP (1),

where Vj converges weakly to a N(0, 1) distribution and where

σ̂2
j := σ2

ε

(
Θ̂ξ̂Σ̂ξ̂Θ̂

T
ξ̂

)
j,j
.

A proof can be found in [2]. The construction of confidence intervals for each
component of ξ is straightforward.

2.3 Summary of the methodology

We now summarize our methodology to perform inference on the parametric part
of a partially linear single-index model.

1. Define the penalized estimator ξ̂ = (α̂, β̂) as the minimizer of L(α, β) =
1

2n

∑n
i=1(Yi − η̂(ZTi α;α, β) − XT

i β)2 + λ ‖α‖1 + λ ‖β‖1, where the function
η̂(ZTi α;α, β) is defined in equation (2).

2. Compute η̂(ZTi α̂; α̂, β̂) and
∂η̂(ZTi α;α,β)

∂(α,β) |(α̂,β̂) by using equation (2).

3. Compute Xi,ξ̂, Σ̂ξ̂, θ̂ξ̂ as described in section 2.2.
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4. Compute ξ̂desp = ξ̂ + Θ̂ξ̂

[
1
n

∑n
i=1Xi,ξ̂(Yi − η̂(ZTi α̂; α̂, β̂)−XT

i β̂)
]
.

5. Use Theorem 12 to perform inference. For example construct a confidence

interval for ξ0
j at a confidence level 1− c as CIj =

[
ξ̂desp
j ± σ̂j√

n
Φ−1(1− c/2)

]
,

with σ̂j defined in the theorem and Φ the standard normal cumulative dis-
tribution function.

3 Simulation results

We now illustrate our method via a simulation study. We consider the model

Y = (ZTα0 − 0.5)2 +XTβ0 + ε

where ε is from a N(0, 0.32) distribution and where Z and X are independently
generated from a N(0, Ip×p) and a N(0, Iq×q) distribution for each observation.
The parameters are defined as α0 = ( 1√

s0
· 1s0 , 0 · 1p−s0) and β0 = (1s0 , 0 · 1q−s0),

with s0 the sparsity level and 1a a vector of ones of length a. We compute 95% uni-
variate confidence intervals using the procedure described in the previous section.
Figure 1 illustrates an example of univariate confidence intervals for one realization.
Table 1 compares the average coverage obtained by using the non-penalized estima-
tor, the penalized estimator and our desparsified estimator over 500 independent
realizations for several settings. We observe good finite-sample performances.
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Figure 1: 95% confidence intervals for one realization with (n, p, q, s0) =
(500, 200, 200, 5). For clarity only 10% of the components of the true non-active
set are shown.
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n = 200 n = 500
Non-Penalized Penalized Desparsified Non-Penalized Penalized Desparsified

Sparsity s0 = 2 Avg cov 0.78 n/a 0.94 0.86 n/a 0.93
Avg cov S0,α 0.69 0.66 0.92 0.80 0.87 0.90
Avg cov Sc0,α 0.75 n/a 0.93 0.82 n/a 0.92
Avg cov S0,β 0.81 0.26 0.93 0.89 0.35 0.94
Avg cov Sc0,β 0.83 n/a 0.95 0.90 n/a 0.95

Sparsity s0 = 5 Avg cov 0.78 n/a 0.97 0.81 n/a 0.93
Avg cov S0,α 0.65 0.59 0.94 0.71 0.64 0.87
Avg cov Sc0,α 0.75 n/a 0.96 0.74 n/a 0.91
Avg cov S0,β 0.83 0.26 0.97 0.88 0.31 0.94
Avg cov Sc0,β 0.82 n/a 0.97 0.88 n/a 0.96

Table 1: Average coverage of confidence intervals for nominal coverage of 0.95 over
500 simulation runs with 100 independent variables (p = q = 50) and σε = 0.3. We
vary the number of observations n and the sparsity level s0. The scaled lasso is
used to compute the penalized estimator. S0,α (resp. S0,β) is the true active set of
the components of α (resp. β), while Sc0,α (resp. Sc0,β) is the true non-active set.

4 Discussion

We obtained confidence intervals for all parametric components of a partially linear
single-index model in a high-dimensional setting where sparsity is assumed. We
show the desparsification process to work well for such models.
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Random Matrix Models with Heavy Tails

Johannes Heiny∗1 and Thomas Mikosch1

1University of Copenhagen, Denmark

Abstract: Many fields of modern sciences are faced with high-dimensional data
sets. In order to explore the structure in the data the sample covariance matrix can
be used. Often dimension reduction techniques facilitate further analyzes of large
data matrices in genetic engineering and finance. Principal Component Analysis
for example makes a linear transformation of the data to obtain vectors of which
the first few contain most of the variation in the data. These principal component
vectors correspond to the largest eigenvalues of the sample covariance matrix. This
motivates to study the eigenvalue decomposition of the sample covariance matrix.

Random Matrix Theory is concerned with the spectral properties of large di-
mensional random matrices. In this context both the distribution of the entries
of a random matrix as well as their dependence structure play a crucial role. The
case of heavy-tailed components is of particular interest and the theory is not as
well developed as in the light-tailed case.

We consider the (random) sample covariance matrix of a multivariate time
series. The p-dimensional time series constitutes a linear process across time and
between components. The input noise of the linear process is assumed to have
a regularly varying tail with index α ∈ (0, 4). For such distributions moments
higher than α cease to exist. If we have n observations from this time series, we
can calculate the corresponding sample covariance matrix. In classical multivariate
statistics p is fixed and relatively small in comparison to the sample size n. In our
setting both the dimension and the sample size tend to infinity simultaneously.

If the multivariate time series is iid across time and between the components,
Auffinger et al. [1] showed that the point process of properly normalized eigenvalues
of the sample covariance matrix converges in distribution to a Poisson point process
that only depends on the index of regular variation. Davis et al. [2] provided an
extension by dropping the independence assumption across time. We also drop the
independence between components. In particular, we study the asymptotic behav-
ior of the largest eigenvalues of such a sample covariance matrix by approximation
results.

Keywords: regular variation, sample covariance matrix, largest eigenvalues, de-
pendent entries
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Abstract: Currently is the analysis of high-dimensional data a popular field of
research, thanks to many applications e.g. in genetics. At the same time, the type
of problems that tend to arise in genetics, can often be modelled using LMMs in
conjunction with high-dimensional data. In this paper we introduce two new meth-
ods and briefly compare them to existing methods, which can be used for variable
selection in high-dimensional linear mixed models. We compare the methods on
“small dimension” high-dimensional data, because some of the compared methods
are not suitable for very high dimensions. As we will show in a simulation study,
both methods perform well compared to existing methods.

Keywords: linear mixed model, variable selection, high-dimensional data
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1 Introduction

The linear mixed model (LMM) allows us to specify the covariance structure of the
model, which enables us to capture relationships in data, for example population
structure, family relatedness etc. Therefore, LMMs are often preferred to linear
regression models. Consider a LMM of the form

Y = Xβ +Zu+ ε,

where

Y is n× 1 vector of observations,

X is n× p matrix of regressors,

β is p× 1 vector of unknown fixed effects,

Z is n× q matrix of predictors,

u is q × 1 vector of random effects with the distribution N (0,D),

ε is n×1 error vector with the distribution N (0,R = σ2I) and independent
from u.
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In genome-wide association studies in genetics, one studies the dependence of
phenotype on the genotype. Genetic information can consist of up to 106 variables,
but only information about the genotype of a small group of subjects is available.
Variable selection in high-dimensional data refers to the selection of a small group
of variables (denote it S0, and s0 = |S0| the number of relevant variables) which
influence observations. In our case we assume, that matrix X is high-dimensional
and we select only variables from matrix X.

More information about the model can be found in section 3.

2 Methods

In this paper we compare five methods for variable selection in high-dimensional
LMMs.

All of the mentioned methods are primarily β estimation methods, not selection
methods. However they can be thought of as selection methods if we define selected
variables to be those for which βi 6= 0 for i = 1, . . . , p.

2.1 LASSO

Least absolute shrinkage and selection operator [4, 1] is an established method
for selecting variables in linear regression models. LASSO corresponds to the `1-
penalized ordinary least squares estimate:

β̂ = arg min
β

[
‖Y −Xβ‖22 + λ‖β‖1

]
,

where λ is a fixed penalized parameter.
In this study we use the LASSO as the reference, as it ignores LMM data

structure. For the LASSO method we use the built-in MATLAB function lasso().

2.2 LMMLASSO

Authors in [3] suggest a method based on the minimization of the non-convex
objective function consisting of the `1 penalized maximum likelihood estimate of
parameter β from Y ∼ N (Xβ,V (= ZDZT +R)):

(β̂, D̂, R̂) = arg min
β,D,R

[
1

2
log |V |+ 1

2
(Y −Xβ)TV −1(Y −Xβ) + λ‖β‖1

]
,

where λ is a fixed parameter. For this method we used the language R package
lmmlasso, which uses the coordinate gradient descent algorithm to the optimize
objective function.

2.3 LASSOP

In paper [2] authors introduce a method based on the log-likelihood of the complex
data (Y T,uT)T penalized with the `1 penalization:
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(β̂, D̂, R̂) = arg min
β,D,R

[
log |R|+ (Y −Xβ −Zu)TR−1(Y −Xβ −Zu)

+ log |D|+ uTD−1u+ λ‖β‖1
]
,

where λ is a fixed parameter. The objective function is non-convex, like in
LMMLASSO. This method is implemented in language R in package MMS. The
optimize problem in this implementation is solved by the adjusted EM algorithm.

2.4 New approach one

The first approach consists in a transformation that removes group effects from
data. The principle of this transformation is widely used in data analysis, for ex-
ample in restricted/residual maximum likelihood (REML). In our case we transform
the data as follows

X̃ = (I −ZZ+)X,

Ỹ = (I −ZZ+)Y ,

where Z+ is the pseudoinverse matrix. The transformation eliminates random
segments of the problem (associated with matrix Z), which allows us to use the
LASSO method for linear regression model.

2.5 New approach two

Methods LMMLASSO and LASSOP are based on non-convex optimization prob-
lems with one penalty parameter. For problems of dimension higher than 104

are methods based on non-convex optimization problems almost unusable, because
their computational complexity is beyond the capabilities of current computers.
One of the possible solutions to this problem is the simplification of the optimized
function to a convex function. Therefore, we have proposed a method based on the
solution to the following convex problem

(β̂, û) = arg min
β,u

‖Y −Xβ −Zu‖22 − λ‖β‖1 − Λ

q∗∑
i=1

‖ iu‖22

 ,
where λ and Λ are fixed parameters, q∗ is the number of variance components

(without error) and iu is the part of vector u belonging to the i-th variance com-
ponent.

Basically we are exchanging computational complexity for the need to inspect
a two-dimensional parameter space. We implement the method in MATLAB using
the modeling system CVX and the solver Mosek.
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3 Simulation study

This study compares the presented methods on high-dimensional data with “small
dimension”, because the curent implementations of methods LMMLASSO and
LASSOP are commonly unable to solve problems of dimension higher then p = 103.

Data in our simulation study are divided into twenty groups of six observations.
Together we have n = 120 observations. For each observation we observe p = 150
variables, but only s0 = {1, . . . , 10} variables influence the observations. Relevant
variables are randomly selected from all variables and the effect of relevant variables
is one. The effect of other variables is zero. Matrix Z captures group structure
of the data. For every group we observe two variables, therefore we consider two
variance components and the error variance component. Z is a block diagonal
matrix and u consist of two parts, each for one variance component. Both parts of
the random effects u are randomly selected from N (0,D = 2 · I). Errors are from
N (0, I).

For all mentioned methods we get different sets of selected variables for different
parameters λ or Λ. We generate a hundred problems as described in the previous
paragraph. As a correctly solved problem we consider only a problem for which the
method gives for at least one parameter or parameter combination as the selected
variable set exactly set S0. Figure 1 shows the number of correctly solved problems
for all five methods for different numbers of relevant variables (from 1 to 10).
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Figure 1: Comparison of the number of correctly solved problems for different s0

with five different methods.
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4 Conclusion

In Figure 1 we can see that for small numbers of relevant variables all methods are
almost infallible. With the increasing number of relevant variables, the accuracy of
methods decreases. This is understandable, because with more relevant variables
the correlation of each relevant variable with the vector of observations decreases.
Therefore, it is more difficult to identify correctly the exact set of variables. The
accuracy of methods LMMLASSO and LASSOP decreases faster. The seemingly
weak performance of these methods is caused by the very strict condition of correct-
ness. Often, the sets of selected variables identify by these methods contained only
a few unnecessary variables. This may be due to the implementation in different
languages.

This study hints at the potential of the newly proposed methods to significantly
outperform both the LMMLASSO and the LASSOP. The newly proposed methods
are also suitable for high-dimensional data with dimension up to 105.

However, this is only a preliminary study and one of the first addressing the
question. A more extensive analysis can be expected in the future.
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Abstract: In many important statistical applications the number of parameters
may be much larger than the sample size. One of the main approaches to deal with
this situation is to assume that the underlying true model is sparse so that only a
sufficiently small number of parameters are important. Methods for point estima-
tion in such sparse high-dimensional settings have been extensively studied in the
past years (see [1]). Less work has yet been done on developing methodology for
inference for the parameters of interest in this setting. We propose an estimator for
low-dimensional parameters of the high-dimensional vector and show it is asymp-
totically normal and regular, leading to confidence regions for low-dimensional
parameters. Our approach is based on `1-penalized M-estimators which serve as
initial estimates for construction a one-step corrected estimator. We show validity
of the suggested approach in several situations including quantile regression where
the loss function is not differentiable or precision matrix estimation [2], and fur-
ther consider general high-dimensional models. Under a sparsity assumption on
the high-dimensional parameter, smoothness conditions on the expected loss and
an entropy condition we show that the proposed de-sparsified estimator is asymp-
totically normal. This leads to uniformly valid confidence regions and hypothesis
testing for low-dimensional parameters.
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Abstract: Alternative spectral concepts for the analysis of time series recently
have been considered by various authors. The copula spectral density kernels intro-
duced in [3] provide a full characterization of the copulas associated with the pairs
(Xt, Xt−k) in a process (Xt)t∈Z, and account for important dynamic features, such
as changes in the conditional shape (skewness, kurtosis), time-irreversibility, or de-
pendence in the extremes, that their traditional counterparts cannot capture. De-
spite various proposals for estimation strategies, only quite incomplete asymptotic
distributional results are available so far for the proposed estimators, which con-
stitutes an important obstacle for their practical application. This paper contains
motivation and definitions for the class of smoothed rank-based cross-periodograms
considered in [13]. An asymptotic analysis is presented: for a very general class of
(possibly non-linear) processes, properly scaled and centered smoothed versions of
those cross-periodograms, indexed by couples of quantile levels, converge weakly,
as stochastic processes, to Gaussian processes. Note that the present paper is a
very condensed version of [13], where technical details and simulation results can
be found.

Keywords: time series, spectral analysis, quantiles, copulas, ranks

AMS subject classifications: 62M15, 62G35

1 Introduction

Frequency domain methods play a central role in the nonparametric analysis of time
series. The classical approach is based on the spectral density which is traditionally
defined as the Fourier transform of the autocovariance function of the process under
study. Common tools for the estimation of spectral densities are the periodogram
and its smoothed versions. The success of periodograms in time series analysis is
rooted in their fast and simple computation (through the fast Fourier transform
algorithm) and their interpretation in terms of cyclic behavior, both of a stochastic
and of deterministic nature, which in specific applications are more illuminating
than time-domain representations.

Being intrinsically connected to means and covariances, the traditional spectral
analysis inherits both the nice features (such as optimality properties in the analysis
of Gaussian series) of L2-methods, but also their weaknesses: they are lacking
robustness against outliers and heavy tails, and are unable to capture important
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dynamic features such as changes in the conditional shape (skewness, kurtosis),
time-irreversibility, or dependence in the extremes.

Various extensions and modifications of the traditional periodogram were pro-
posed to remedy those drawbacks (see for example [6], [9], [10], [14], Chapter 8
of [20], and [21]). While the objective of those attempts is a robustification of
classical tools, they essentially aim at protecting existing spectral methods against
the impact of possible outliers or violations of distributional assumptions.

Recently, alternative spectral concepts that account for more general dynamic
features were proposed. A first step in that direction was taken by [7], who proposes
a generalized spectral density with covariances replaced by joint characteristic func-
tions. In the specific problem of testing pairwise independence, [8] introduces a test
statistic based on the Fourier transforms of (empirical) joint distribution functions
and copulas at different lags. The strand of literature indicating the renewed surge
of interest in that type of concept includes [2], [3], [5], [15], [16], [17], and [18]. A
more detailed account of these and some further contributions are given in [13].

The objective of the present paper is to provide a short, comprehensive pre-
sentation of the general class of smoothed rank-based copula cross-periodograms
discussed at length in [13]. Their asymptotic properties are discussed in Section 3.
For a detailed discussion, applications and a simulation study the reader shall be
referred to the full version of the paper (i. e. [13]).

2 Copula spectral density kernels and rank-based
copula periodograms

Let (Xt)t∈Z denote a strictly stationary, real-valued process, of which we observe a
finite stretch X0, ..., Xn−1. Denote by F the marginal distribution function of Xt,
and by qτ := inf{x ∈ R : τ ≤ F (x)}, τ ∈ [0, 1] the corresponding quantile function,
where we use the convention inf ∅ = ∞. Note that if τ ∈ {0, 1} then −∞ and ∞
are possible values for qτ . Our main object of interest is the copula spectral density
kernel

fqτ1 ,qτ2 (ω) :=
1

2π

∑
k∈Z

e−iωkγUk (τ1, τ2), ω ∈ R, (τ1, τ2) ∈ [0, 1]2, (1)

based on the copula cross-covariances

γUk (τ1, τ2) := Cov
(
I{F (Xt) ≤ τ1}, I{F (Xt−k) ≤ τ2}

)
, k ∈ Z.

Note that fqτ1 ,qτ2 (ω) exists under mild mixing assumptions. These quantities were
introduced in [3], and generalize the τ -th quantile spectral densities of [5], with
which they coincide for τ1 = τ2 = τ ; an integrated version actually was first
considered by [8].

It can be shown (cf. [3]) that the copula spectral densities provide a complete
description of the pairwise copulas of a time series. Thus, by accounting for much
more than the covariance structure of a series, it extends and supplements the
classical L2-spectral density.
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It is important to observe that γUk (τ1, τ2) and fqτ1 ,qτ2 (ω) can be seen as the
cross-covariance and cross-spectrum of the bivariate process(

I{F (Xt) ≤ τ1}, I{F (Xt) ≤ τ2}
)
. (2)

Thus, an estimator for the cross spectrum of (2) is also an estimator for fqτ1 ,qτ2 (ω).
If F were known and (Xt)t∈Z was observed, we could determine (2) and follow
the lines of [1] to construct an estimator. Observe, that (2) has binary-valued
component processes, such that classical assumptions regarding the dependency
structure (e. g. linearity of the process) can fail to hold. The estimation of cross
spectra of general non-linear processes has been and remains to be an active domain
of research (see [1] for early results, and [4], [19] or [22] for more recent references).

To handle the case where F is unknown, it is reasonable to estimate the un-
known F with the empirical distribution function F̂n(x) := n−1

∑n−1
t=0 I{Xt ≤ x}.

More precisely, we define In,R as the collection

Iτ1,τ2n,R (ω) :=
1

2πn
dτ1n,R(ω)dτ2n,R(−ω), dτn,R(ω) :=

n−1∑
t=0

I{F̂n(Xt) ≤ τ}e−iωt, (3)

ω ∈ R, (τ1, τ2) ∈ [0, 1]2, τ ∈ [0, 1]. Note that nF̂n(Xt) is the rank of Xt among
X0, . . . , Xn−1. Hence, we will refer to In,R as the rank-based copula periodogram;
shortly, the CR-periodogram. Let  denote the Hoffman–Jørgensen convergence,
namely, the weak convergence in the space of bounded functions [0, 1]2 → C, which
we denote by `∞C ([0, 1]2). Note that results in empirical process theory are typically
stated for spaces of real-valued, bounded functions; see Chapter 1 of [23]. By
identifying `∞C ([0, 1]2) with the product space `∞([0, 1]2)× `∞([0, 1]2) these results
transfer immediately. We will see (Theorem 13) that, under suitable assumptions,(

Iτ1,τ2n,R (ω)
)

(τ1,τ2)∈[0,1]2
 
(
I(τ1, τ2;ω)

)
(τ1,τ2)∈[0,1]2

as n→∞,

for any fixed frequencies ω 6= 0 mod 2π, where the limit I is such that

E[I(τ1, τ2;ω)] = fqτ1 ,qτ2 (ω) for all (τ1, τ2) ∈ [0, 1]2 and ω 6= 0 mod 2π

and I(·, ·;ω1) and I(·, ·;ω2) are independent as soon as both ω1 − ω2 6= 0 mod 2π
and ω1 + ω2 6= 0 mod 2π. In view of this asymptotic independence at different
frequencies, it seems natural to consider smoothed versions of Iτ1,τ2n,R (ω), namely,

for (τ1, τ2) ∈ [0, 1]2 and ω ∈ R, averages of the form

Ĝn,R(τ1, τ2;ω) :=
2π

n

n−1∑
s=1

Wn

(
ω − 2πs/n

)
Iτ1,τ2n,R (2πs/n), (4)

where Wn denotes a sequence of weighting functions.

3 Asymptotic properties

We make the following assumption regarding the process (Xt)t∈Z:
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(A) Assume that the process (Xt)t∈Z is strictly stationary and exponentially
α-mixing, i. e., there exists constants K <∞ and κ ∈ (0, 1), such that,

α(n) := sup
A∈σ(X0,X−1,...)
B∈σ(Xn,Xn+1,...)

|P(A ∩B)− P(A)P(B)| ≤ Kκn , n ∈ N. (5)

Theorem 13. Assume that F is continuous and that (Xt)t∈Z satisfies Assump-
tion (A). Then, for every fixed ω 6= 0 mod 2π,(

Iτ1,τ2n,R (ω)
)

(τ1,τ2)∈[0,1]2
 
(
I(τ1, τ2;ω)

)
(τ1,τ2)∈[0,1]2

in `∞C ([0, 1]2).

The (complex-valued) limiting processes I, are of the form

I(τ1, τ2;ω) =
1

2π
D(τ1;ω)D(τ2;ω), (τ1, τ2) ∈ [0, 1]2,

with D(τ ;ω) = C(τ ;ω) + iS(τ ;ω) where C and S denote two centered jointly Gaus-
sian processes. For ω ∈ R, their covariance structure takes the form

E
[
(C(τ1;ω),S(τ1;ω))′(C(τ2;ω),S(τ2;ω)))

]
= π

(
<fqτ1 ,qτ2 (ω) −=fqτ1 ,qτ2 (ω)
=fqτ1 ,qτ2 (ω) <fqτ1 ,qτ2 (ω)

)
.

Moreover, D(τ ;ω) = D(τ ;ω + 2π) = D(τ ;−ω), and the family {D(·;ω) : ω ∈ [0, π]}
is a collection of independent processes.

In order to establish the convergence of the smoothed CR-periodogram pro-
cess (4), we require the weights Wn in (4) to satisfy the following assumption:

(W) The weight function W is real-valued and even, with support [−π, π]; more-
over, it has bounded variation, and satisfies

∫ π
−πW (u)du = 1.

Denoting by bn > 0, n = 1, 2, . . ., a sequence of scaling parameters such
that bn → 0 and nbn →∞ as n→∞, define

Wn(u) :=

∞∑
j=−∞

b−1
n W (b−1

n [u+ 2πj]).

Theorem 14. Let Assumptions (A) and (W) hold. Assume that X0 has a contin-
uous distribution function F and that there exist constants κ > 0, k ∈ N, s. t.

bn = o(n−1/(2k+1)) and bnn
1−κ →∞.

Then, for any fixed ω ∈ R, the process√
nbn

(
Ĝn,R(τ1, τ2;ω)− fqτ1 ,qτ2 (ω)−B(k)

n (τ1, τ2;ω)
)
τ1,τ2∈[0,1]

 H(·, ·;ω) (6)

in `∞C ([0, 1]2), where the bias B
(k)
n is given by

B(k)
n (τ1, τ2;ω) :=


k∑
j=2

bjn
j!

∫ π

−π
vjW (v)dv

dj

dωj
fqτ1 ,qτ2 (ω) ω 6= 0 mod 2π,

n(2π)−1τ1τ2 ω = 0 mod 2π.

(7)
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The process H(·, ·;ω) in (6) is a centered Gaussian process characterized by

Cov
(
H(u1, v1;ω

)
, H(u2, v2;ω)) = 2π

(∫ π

−π
W 2(w)dw

)
×
(
fqu1 ,qu2 (ω)fqv2 ,qv1 (ω) + fqu1 ,qv2 (ω)fqv1 ,qu2 (ω)I{ω = 0 mod π}

)
.

Moreover, H(ω) = H(ω + 2π) = H(−ω), and the family {H(ω), ω ∈ [0, π]} is a
collection of independent processes. In particular, the weak convergence (6) holds
jointly for any finite fixed collection of frequencies ω.

Theorem 14 can be used to conduct asymptotic inference in various ways. An
important example is the construction of asymptotic confidence intervals (see Re-
mark 3.4 and Section 5 in [13] for details). An R package is available (see [11, 12]).
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Abstract: The purpose of this short paper is to outline some practical issues
that arise when one computes the fair value of a derivative on an underlying that
pays out discrete dividends. In particular, the case of American options will be
presented. We will show that as opposed to the benchmark Crank-Nicolson method,
the positivity and smoothness of the numerical solution are preserved when discrete
dividend payments are applied to an exponentially fitted scheme. Then, we will
discuss some approaches to dividend policies in extreme scenarios and will see how
our suggested scheme fits these cases.

Keywords: finite differences, dividends, American options
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1 Introduction

American options are widely employed in the financial industry. As there are no
closed form solutions for this type of derivatives, one has to rely on numerical
approximations in their pricing. Here we will focus of the application of finite
difference methods for pricing these contracts. The methods employed often turn
out to be sensitive towards special conditions, such as dividends. That is, the
approximations may result in a solution with spurious oscillations or even negative
prices. Also, when applying a numerical method, border cases need to be taken
into account - low volatility levels, low asset price levels. Special attention will be
given the case when the underlying asset price is lower than the dividend declared
by the company.

2 Theoretical background

We consider a standard geometric Brownian motion diffusion process with constant
coefficients r and σ for the evolution of the underlying asset price S

dS/S = rdt+ σdWt, (1)

where r and σ denote, respectively, the interest rate and volatility in percentages
and belong to the interval [0, 1]. If t is the time to expiry T of the contract,
0 ≤ t ≤ T , the price V (S, t) of the option satisfies the Black-Scholes PDE ([1])

−∂V
∂t

+ r S
∂V

∂S
+

1

2
σ2S2 ∂

2V

∂S2
− r V = 0, (2)
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endowed by its initial and boundary conditions. The solution V (S, t) depends on
the two independent variables S and t. It should be noted that the option price
can move on the positive real axis interval [0,+∞).

Finite difference schemes aim in approximating the solution of a PDE by solving
a set of discretized equations. A discussion on different methods can be found in
[7]. The most famous schemes are the explicit, implicit and Crank-Nicolson. They
all rely on taking central differences when discretizing the partial derivatives with
respect to the underlying asset S, i.e.

∂V

∂S
=
Vi,j+1 − Vi,j−1

2h
,

∂2V

∂S2
=
Vi,j+1 + Vi,j−1 − 2Vi,j

h2
. (3)

Here, Vi,j denotes the value of the option at i-th point in time and j-th point
in the discretized interval [0, Smax]. The time step has a size of k and the asset
step has a size of h.

The explicit scheme then takes the time derivative as forward difference of t
(backward in physical time)

∂V

∂t
=
Vi,j − Vi−1,j

k
. (4)

It is accurate at order O(k, h). However, it is stable and convergent only for

λ =
k

h2
≤ 0.5. (5)

That is, problems may occur for small time steps.
The implicit scheme takes the time derivative as backward difference of t (for-

ward in physical time)
∂V

∂t
=
Vi+1,j − Vi,j

k
. (6)

It is accurate at order O(k, h). Also, the implicit finite difference scheme is uncon-
ditionally stable.

The Crank-Nicolson scheme is the average of the explicit and implicit. It is
accurate at order O(k2, h2). As the implicit method, Crank-Nicolson is uncondi-
tionally stable. However, in the presence of points of discountinuity in the initial
conditions or with special boundary values, small asset steps may introduce spuri-
ous ocsillations. The latter may even lead to obtaining negative option prices. A
discussion on these effects can be found in [4], for example.

The scheme introduced by [3] is an interesting alternative to the previously
described methods. It is exponentially fitted, based on a hyberbolic cotangent
function. Consider the operator L defined as:

LV = −∂V
∂t

+ µ(S, t)
∂V

∂S
+ σ(S, t)

∂2V

∂S2
+ b(S, t)V, (7)

where µ(S, t) = rS, σ(S, t) = 1
2σ

2S2 and b(S, t) = −r.
Replacing the derivatives, the fitted operator is defined by

LhkU
n
j = −

Un+1
j − Unj

k
+ µn+1

j

Un+1
j+1 − Un+1

j−1

2h
+ ρn+1

j

δ2
xU

n+1
j

h2
+ bn+1

j Un+1
j , (8)
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Figure 1: Crank-Nicolson scheme for an American put option.

where h and k are the space and time step, respectively. The factor ρ is defined as

ρn+1
j =

µn+1
j h

2
coth

µn+1
j h

2σn+1
j

. (9)

The scheme is stable and consistent. Moreover, it converges regardless of the
volatility size. It does not suffer from oscillations for extreme parameter values and
behaves good for special conditions (such as barriers) and low volatility environ-
ment ([6]). The method is of order O(k, h).

In what follows we apply dividends to the Duffy scheme and explore its com-
patibility with a few dividend policies.

3 Results

With an implementation based on [2], the discrete dividend extension was applied
to the scheme suggested by Duffy. It handles low volatility levels and provides a
smooth and oscillation-free solution when pricing American options. An example
is run on an American put option with current underlying value of 40, strike =
40, rate = 0.1, volatility = 0.05, time to maturity of one year, and an expected
dividend of size 5 in 0.6 years from evaluation date.

Figure 1 plots the result obtained by the Crank-Nicolson finite difference scheme.
As one can easily see, the price function suffers from spurious oscillations. Then,
on Figure 2 is provided the outcome of employing the Duffy scheme on the very
same option. The undesired price fluctuations are gone and the result is a smooth
function.

4 Discussion on Dividend Policies

When pricing derivatives on an underlying asset which pays out dividends, one
has to deal with the shifts these payments cause to the underlying price. A broad
review of different dividend policies can be found in [5]. Here we discuss some of
them and show how the Duffy scheme fits into these policies.

Since the classical Black-Scholes option pricing model has become popular, prac-
titioners and academics are suggesting various approaches to applying dividends to
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Figure 2: Duffy scheme for an American put option

the underlying asset price. The continuous dividends assumption is oversimplify-
ing as longer term dividends are less predictable. Another simple model suggests
updating the stock series with the discounted expected dividend which again shifts
the price inaccurately for dividends far in the future. A separate group of policies
is based on applying an adjustment to the volatility term. An approach which is
inefficient in terms of computational time is employing non-recombining binomial
trees.

It is interesting to review the policies suggested in case of a serious drop in the
underlying value. That is, what should the numerical approach be if the asset price
becomes lower than the declared dividend? If S denotes the underlying price at
the time the dividend should be paid out and D is the declared dividend size, in
the scenario just described we have that S < D. The two suggested policies for
this case are survivor and liquidator.

According to the survivor policy, the company will pay no dividend to its share-
holders. In other words, the company will have no ability to fulfill the declared
payment but will still survive.

On the other hand, the liquidator policy adopts a more strict view. If the
company finds itself in a situation when its share market price is lower than the
declared dividend, it should pay out an amount equal to the current asset price.
This is the policy encorporated in the Duffy scheme.

Despite having a marginal effect, the choice of a dividend policy in case of a
severe drop in asset prices is a step towards having a fully specified model.

5 Conclusion

This short paper presented a brief outline of some of the most popular finite dif-
ference methods employed in option pricing, together with the main problems in
their application. Then it was shown that the Duffy scheme is suitable for ap-
plying discrete dividends, as it does not suffer from numerical issues that may
result in spurious oscillations. Finally, different dividend policies in option pricing
approximations were discussed.
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Abstract: The well known Galton–Watson process can be generalized the fol-
lowing way; suppose the population consists of multiple types of individuals and
allow the offsprings to have a different type than their parents. Denote the number
of types by d. To describe this process we have to assign a d-dimensional offspring
distribution to each of the types. The offspring mean matrix is a matrix whose
columns consist of the expectation of these distributions.

In the single-type case we distinguish between subcritical, critical and super-
critical processes based on the relation of the offspring mean to 1. For multi-type
Galton–Watson processes we make the same distinction based on the spectral ra-
dius of the offspring mean matrix. Immigration can be introduced to the model
exactly as in the single-type case, by adding i.i.d. random vectors representing the
number of immigrants in each generation.

In Ispány et al. [1] we describe the asymptotic properties of the conditional
least squares estimate of the offspring mean matrix for critical 2-type Galton-
Watson processes with immigration under heavy restrictions on the structure of
the matrix. This talk will focus on how can one replace the restrictions with more
sensible assumptions, namely positive regularity of the matrix. These results are
contained in [2].

Keywords: Galton–Watson process with immigration, conditional least squares
estimator
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[2] Körmendi, K., Pap, G. Statistical inference of 2-type critical Galton-Watson
processes with immigration
available on arXiv: arxiv.org/abs/1502.04900

∗Corresponding author: kormendi@math.u-szeged.hu



Invariance Principle Under Self-Normalization for
AR(1) Process

Jurgita Markevičiūtė∗
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Abstract: We investigate the polygonal line process built on the observations of
the first order autoregressive process. We prove the functional limit theorem in the
continuous functions space C[0, 1] under the certain self-normalization, assuming
that innovations of the autoregressive process are in domain of attraction of normal
distribution.
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1 Introduction

We investigate the first order autoregressive process (yn,k) defined by

yn,k = φnyn,k−1 + εk, yn,0 = 0, n ≥ 0, 0 ≤ k ≤ n, (1)

where (εk) are i.i.d. random variables and ε1 ∈ DAN1, Eε1 = 0 and n(1 −
φn) −−−−→

n→∞
∞. If φn is a constant, then |φn| = |φ| ≤ 1 and we have a stationary

autoregressive process. If we set φn = 1 − γn/n, γn/n → 0 and γn → ∞, as
n → ∞, then φn −−−−→

n→∞
1 and such process is called nearly nonstationary first

order autoregressive process (see [1]). Though (yn,k) is a triangular array, but for
simplicity, we will omit index n and we will write yk = φnyk−1 + εk.

The aim of this paper is to investigate the convergence of polygonal line pro-
cess built on observations (yk) under the self-normalization. Such polygonal line
processes, assuming that innovations have finite second moment, have been inves-
tigated by Markevičiūtė, Račkauskas and Suquet [2]. Here we assume that second
moment does not exist and we will use certain self-normalization. Let us define
polygonal line processes built on yk’s

Sn(t) =

[nt]∑
k=1

yk + (nt− [nt])y[nt]+1, Sn(0) = 0, t ∈ [0, 1]. (2)

∗Corresponding author: jurgita.markeviciute@mif.vu.lt
1DAN denotes domain of attraction of normal distribution.
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and εk’s

Wn(t) =

[nt]∑
k=1

εk + (nt− [nt])ε[nt]+1, Wn(0) = 0, t ∈ [0, 1]. (3)

Processes Sn(t) and Wn(t) are defined in the continuous functions space C[0, 1]
endowed with the uniform norm

‖f‖∞ = sup
0≤r≤1

|f(r)| , for every f ∈ C[0, 1].

In what follows,
D−−−−→

n→∞
denotes convergence in distribution and

P−−−−→
n→∞

denotes

convergence in probability.
We assume that ε1 ∈ DAN , this means that there exists a sequence bn → ∞

such that

b−1
n

n∑
k=1

εk
D−−−−→

n→∞
N(0, 1). (4)

Then by Gnedenko-Raikov’s Theorem,

b−2
n V 2

n
P−−−−→

n→∞
1, where V 2

n =

n∑
k=1

ε2
k.

Račkauskas and Suquet [3] proved that

V −1
n Wn

D−−−−→
n→∞

W in C[0, 1],

where W = (W (t), t ∈ [0, 1]) is a standard Wiener process. So from two latter
results and Slutsky’s Theorem, obviously follows that

b−1
n Wn

D−−−−→
n→∞

W in C[0, 1]. (5)

Further we state few useful facts (see for example [4]). If ε1 ∈ DAN , then with
normalizing sequence bn as in (4), for each τ > 0, one has

nP (|ε1| > τbn) −−−−→
n→∞

0, (6)

n

b2n
Eε2

11{|ε1|≤τbn} −−−−→n→∞
1, (7)

n

bn
E |ε1|1{|ε1|>bn} −−−−→n→∞

0. (8)

Note that one may put bn = n1/2`n, where `n is a slowly varying sequence.

2 Limit theorems

The main result of the paper is given in Theorem 15. We use as the normalization
1
n

∑n
k=1 S

2
n(k/n). As the limit we get the functional depending on the Wiener

process.



84 Markevičiūtė -- Self-Normalized Limit Theorem for AR(1)

Theorem 15. Suppose (yk) is defined by (1) and (εk) are i.i.d. random variables
with ε1 ∈ DAN , Eε1 = 0, bn is defined by (4) and n(1− φn) −−−−→

n→∞
∞, then

Sn√
1
n

∑n
k=1 S

2
n(k/n)

D−−−−→
n→∞

W∫ 1

0
W 2(s)ds

in C[0, 1]. (9)

To prove Theorem 15, we need few additional results that might be of inde-
pendent interest. We start with the functional limit theorem in the continuous
function space C[0, 1]. We prove that polygonal line process converge to Wiener
process under the normalization (1− φn)/bn.

Theorem 16. Suppose (yk) is defined by (1) and (εk) are i.i.d. random variables
with ε1 ∈ DAN , Eε1 = 0, bn is defined by (4) and n(1− φn) −−−−→

n→∞
∞, then

1− φn
bn

Sn
D−−−−→

n→∞
W in C[0, 1]. (10)

Next, we give another useful result.

Theorem 17. Suppose (yk) is defined by (1) and (εk) are i.i.d. random variables
with ε1 ∈ DAN , Eε1 = 0, bn is defined by (4) and n(1− φn) −−−−→

n→∞
∞, then

1

n

n∑
k=1

(
1− φn
bn

Sn(k/n)

)2
D−−−−→

n→∞

∫ 1

0

W 2(s)ds. (11)

Finally we turn to a key point of the Theorem 16, that is to control the behaviour
of max1≤k≤n |yk|.

Lemma 1. Suppose (yk) is defined by (1) and (εk) are i.i.d. random variables
with ε1 ∈ DAN , Eε1 = 0, bn is defined by (4) and n(1− φn) −−−−→

n→∞
∞, then

b−1
n max

1≤k≤n
|yk| P−−−−→

n→∞
0. (12)

3 Proofs

First we will prove Lemma 1.

Proof. Lemma 1. We need to prove

P (b−1
n max

1≤k≤n
|yk| > δ) −−−−→

n→∞
0.

For this, let us introduce truncated random variables:

ε′j = εj1{|εj |≤bn}, ε̂j = ε′j − Eε′j
ε′′j = εj1{|εj |>bn}, ε̃j = ε′′j − Eε′′j .
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Then we obtain

P (b−1
n max

1≤k≤n
|yk| > δ) ≤ nP (|ε1| > δbn) + P ′n,

where

P ′n = P

(
b−1
n max

1≤k≤n
|y′k| > δ

)
and y′k =

k∑
j=1

φk−jn ε′j .

Now using (6), it only remains to show that P ′n −−−−→
n→∞

0. For this we need to center

all ε′j and we get

P ′n ≤ P 1
n + P 2

n ,

where

P 1
n = b−1

n max
1≤k≤n

∣∣∣∣∣∣
k∑
j=1

φk−jn Eε′j

∣∣∣∣∣∣ , P 2
n = P

b−1
n max

1≤k≤n

∣∣∣∣∣∣
k∑
j=1

φk−jn ε̂j

∣∣∣∣∣∣ > δ

 .

Note that Eε′j = Eε′′j , so

P 1
n = b−1

n max
1≤k≤n

∣∣∣∣∣∣
k∑
j=1

φk−jn Eε′′j

∣∣∣∣∣∣ ≤ E |ε′′1 | b−1
n max

1≤k≤n

∣∣∣∣∣∣
k∑
j=1

φk−jn

∣∣∣∣∣∣
≤ E |ε1|1{|ε1|>bn}b−1

n (1− φn)−1 =
n

bn
E |ε1|1{|ε1|>bn} · (n(1− φn))−1 −−−−→

n→∞
0,

because of the conditions (8) and n(1− φn) −−−−→
n→∞

∞.

Next let us turn to P 2
n . Notice that E(ε̂1)2 ≤ 4Eε2

11{|ε1|≤bn}, so we obtain

P 2
n ≤

1

b2nδ
2
E

 max
1≤k≤n

∣∣∣∣∣∣
k∑
j=1

φk−jn ε̂j

∣∣∣∣∣∣
2

≤ 1

b2nδ
2

max
1≤k≤n

k∑
j=1

φ2(k−j)
n E(ε̂j)

2

≤ E(ε̂1)2

b2nδ
2

(1− φ2
n)−1 ≤ Cb−2

n (1− φn)−1Eε2
11{|ε1|≤bn}

= C
n

b2n
Eε2

11{|ε1|≤bn}(n(1− φn))−1 −−−−→
n→∞

0,

where C is a constant and convergence follows from conditions n(1−φn) −−−−→
n→∞

∞
and (7). So the proof is finished.

Now we are ready to prove Theorem 16.

Proof. Theorem 16. We have (1), then summing up both sides by k we obtain:

1− φn
bn

[nt]∑
k=1

yk = (y0 − y[nt])b
−1
n + b−1

n

[nt]∑
k=1

εk.
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Taking into account (5) we obtain that it is enough to prove∥∥∥∥1− φn
bn

Sn −
1

bn
Wn

∥∥∥∥
∞

P−−−−→
n→∞

0.

It is easy to see∥∥∥∥1− φn
bn

Sn −
1

bn
Wn

∥∥∥∥
∞

= sup
0≤r≤1

∣∣φn(y0 − y[nr])b
−1
n

∣∣ ≤ max
0≤k≤n

∣∣φnb−1
n (y0 − yk)

∣∣ .
Note that |φn| ≤ 1, ∀n, also y0 = 0 and

b−1
n max

1≤k≤n
|yk| P−−−−→

n→∞
0

by Lemma 1, so the proof is finished.

The proof of Theorem 17 is based on the integral approximation by sums.

Proof. Theorem 17. Let us denote

Z1
n =

1

n

n∑
k=1

(
1− φn
bn

Sn(k/n)

)2

and Z2
n =

∫ 1

0

(
1− φn
bn

Sn(t)

)2

dt.

Then we have for any function f ∈ C[0, 1]∣∣∣∣∣ 1n
n∑
k=1

f(k/n)−
∫ 1

0

f(s)ds

∣∣∣∣∣ =

∣∣∣∣∣
n∑
k=1

∫ k/n

(k−1)/n

(f(k/n)− f(s))ds

∣∣∣∣∣
≤

n∑
k=1

∫ k/n

(k−1)/n

|f(k/n)− f(s)|ds ≤ ω0

(
f,

1

n

)
,

where ω0

(
f, 1

n

)
is modulus of continuity defined by

ω0

(
f,

1

n

)
= sup
|t−s|≤1/n

|f(t)− f(s)| .

So we have ∣∣Z1
n − Z2

n

∣∣ ≤ 1

n
ω0

((
1− φn
bn

Sn(t)

)2

, 1

)
.

By Theorem 16 we have that
(

1−φn
bn

Sn(t)
)

is tight, thus∣∣Z1
n − Z2

n

∣∣ P−−−−→
n→∞

0.

Finally, since integral is a continuous function, so we have by Theorem 17

Z2
n

D−−−−→
n→∞

∫ 1

0

W 2(s)ds

and the proof is finished.
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Finally we can prove the main result.

Proof. Theorem 15. The result (9) follows from Theorems 16 and 17 and a contin-
uous mapping theorem. Note that (9) exclude the degenerated case P (ε1 = 0) = 1,
so that almost surely

∑n
k=1 S

2
n(k/n) > 0 for large enough n. To use continuous

mapping theorem correctly, let us define functional

F (x)(t) =
x(t)√∫ 1

0
x2(s)ds

and denote DF the set of discontinuity points of F . We need to show that P (W ∈
Df ) = 0. For F the only possible discontinuities appears when X = 0, thus
P (W ∈ Df ) = 0 is equivalent to P (W = 0) = 0 and this is a well known result. So
the proof is finished.
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Abstract: In independent component analysis it is assumed that the components
of the observed random vector are linear combinations of latent independent ran-
dom variables, and the aim is then to find an estimate for a transformation matrix
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[8], where the statistical properties of four well-known estimation procedures based
on the use of fourth moments are studied in detail.
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1 Introduction

The basic independent component (IC) model assumes that the components of the
p-variate observed vector xi are linear combinations of the p mutually independent
latent components of zi = (zi1, . . . , zip). The model is written as

xi = µ+ Ωzi, i = 1, . . . , n, (1)

and the full rank p×p matrix Ω is called the mixing matrix. The location vector µ is
a nuisance parameter and the aim is, using only a random sampleX = (x1, . . . ,xn),
to find an estimate of an unmixing matrix W such that Wx has independent
components. Then z and Wx would differ only by order, signs, and scales of the
components. General assumptions for the latent components to be identifiable are

(A1) the components zi1, . . . , zip of zi are independent,

(A2) second moments exist, E(zi) = 0 and E(ziz
′
i) = Ip, and

(A3) at most one of the components zi1, . . . , zip of zi has a normal distribution.

The last assumption is needed because of the fact that the components of any
orthogonal transformation of two independent Gaussian random variables are still
Gaussian and mutually independent. The assumption on the existence of second
moments can be replaced with some other way of fixing the scales of the compo-
nents, see, e.g., [7]. When dealing with the fourth moments, (A2) is of course not
restrictive at all. For more discussion on model (1) and on more general IC models,
see [6].

Under (A2), a natural first step is so called whitening, i.e., standardization
x→ xst = Σ−1/2(x−µ), where Σ = ΩΩ′ is the covariance matrix of the random

∗Corresponding author: jari.p.miettinen@jyu.fi
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variable x from model (1) . Then z = Uxst for some orthogonal matrix U =
(u1, . . . ,up)

′. Thus after estimating Σ, the estimation problem is simplified to the
estimation problem of an orthogonal matrix U only, and then W = UΣ−1/2.

In this paper we review the use of fourth moments in ICA [8]. Section 2 presents
four well-known estimators and Section 3 displays statistical properties of one of
them. The performance of the four estimators is discussed briefly in Section 4.

2 Estimators

2.1 Independent component functionals

In the following definition, the population quantity which we wish to estimate is
defined as the value of an independent component functional W (Fx), where Fx
denotes the distribution function of x.

Definition 4. The p× p matrix-valued functional W (F ) is said to be an indepen-
dent component (IC) functional if (i) W (Fx)x has independent components in the
IC model and (ii) W (Fx) is affine equivariant in the sense that

W (FAx+b) = W (Fx)A−1

for all nonsingular p× p matrices A and for all p-vectors b.

Notice that (ii) implies that in the independent component model, W (Fx)x
does not depend on the specific choices of z and Ω, up to the signs and the order
of the components. The sample version is W (X) = W (Fn), where Fn denotes the
empirical distribution function of X = (x1, . . . ,xn).

2.2 Univariate kurtosis and ICA

The classical kurtosis measures of a random variable x with mean µ and variance
σ2 are β = E

(
[x− µ]4

)
/σ2 and κ = β−3. For standardized variable z = (x−µ)/σ,

then β = E(z4). Normally distributed x has κ = 0, and thus, the deviation of κ
from zero indicates non-normality of x. The succes of many ICA estimators is moti-
vated heuristically by the central limit theorem, stating that a mixture of mutually
independent random variables is more normal than the original variables, and the
idea is to find such orthogonal U that the components of Uxst are maximally
non-normal. When the fourth moments are used as the measure of non-normality,
the consistency of estimators can be proved as in the following theorem, see [8].

Theorem 18. Let the components of z = (z1, . . . , zp)
′ be independent and stan-

dardized so that E(z) = 0 and Cov(z) = Ip, and assume that at most one of the
kurtosis values κi = E(z4

i )−3, i = 1, . . . , p, is zero. Then the following inequalities
hold true.

(i) |E((u′z)4)− 3| ≤ max
{
|E(z4

1)− 3|, . . . , |E(z4
p)− 3|

}
for all u such that u′u = 1. The equality holds only if u = ei for i such that
|E(z4

i )− 3| = max
{
|E(z4

1)− 3|, . . . , |E(z4
p)− 3|

}
, and

(ii) |E[(u′1z)4]− 3|+ · · ·+ |E[(u′pz)4]− 3| ≤ |E[z4
1 ]− 3|+ · · ·+ |E[z4

p]− 3|
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for all orthogonal matrices U = (u1, . . . ,up)
′. The equality holds only if U = JP

for some sign-change matrix J and permutation matrix P .

Items (i) and (ii) suggest the deflation-based [4] and symmetric [5] FastICA
functionals, respectively.

Definition 5. The deflation-based FastICA functional is W (Fx) = UΣ−1/2,
where Σ = Cov(x) and the rows of an orthogonal matrix U = (u1, . . . ,up)

′

are found one by one by maximizing |E((u′kxst)
4) − 3| under the constraint that

u′kuk = 1 and u′juk = 0, j = 1, . . . , k − 1.

Definition 6. The symmetric FastICA functional is W (Fx) = UΣ−1/2, where
Σ = Cov(x) and U = (u1, . . . ,up)

′ maximizes

|E((u′1xst)
4)− 3|+ . . .+ |E((u′pxst)

4)− 3|

under the constraint that UU ′ = Ip.

Later, new estimators with different non-normality measures have been intro-
duced under the name of FastICA, but not all of them have been proved to be
consistent. If the sample size is small, finding the FastICA estimates is occasion-
ally difficult due to convergence problems.

2.3 Multivariate kurtosis and ICA

Define, for any p× p matrix A, B(A) = E (xstx
′
stAxstx

′
st), and further,

Bij = B(Eij), i, j = 1, . . . , p, and B = B(Ip) =

p∑
i=1

Bii,

where Eij denotes the p× p matrix with ijth element one and others zero.
The kurtosis matrix B is diagonal for xst = z with independent components,

and one of the earliest solutions to the independent component problem, FOBI
(fourth order blind identification) [1], uses simultaneous diagonalization of the co-
variance matrix Σ and the kurtosis matrix B.

Definition 7. The FOBI functional is W (Fx) = UΣ−1/2, where Σ = Cov(x) and
the rows of U are the eigenvectors of B = E (xstx

′
stxstx

′
st).

FOBI is a fast and simple method, but it has a major weakness that it is
consistent only if the kurtosis values of the independent components are distinct.

Unlike the kurtosis matrix B in FOBI, the matrices Bij are not diagonal at
xst = z. However, the fourth order cumulant matrices

Cij = Bij −Eij − (Eij)′ − tr(Eij)Ip, i, j = 1, . . . , p,

are diagonal. The IC functional based on Joint Approximate Diagonalization of
these (Eigen)matrices is called JADE [2], and it is defined as follows.
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Definition 8. The JADE functional is W (Fx) = UΣ−1/2 where Σ = Cov(x) and
the orthogonal matrix U maximizes

p∑
i=1

p∑
j=1

||diag(UCijU ′)||2,

where diag(A) is a diagonal matrix with the same diagonal elements as A, and || · ||
is the matrix norm.

The affine equivariance of the JADE estimate is not obvious, because the ma-
trices Cij are not orthogonal equivariant. Interestingly, the joint diagonalization
of Cij , i, j = 1, . . . , p is orthogonal equivariant, which was rigorously proved in [8],
and the affine equivariance of the estimate folllows.

There are several algorithms for an approximate diagonalization of several sym-
metric matrices, but the statistical properties of the corresponding estimates are
not known. The most popular algorithm is perhaps the Jacobi rotation algorithm
suggested in [3]. It appeared in our simulations that the Jacobi rotation algo-
rithm is computationally much faster and always provided the same solution as
our algorithm based on the estimating equations, see Section 3.

The JADE estimate requires computation of p(p+ 1)/2 fourth moment matri-
ces, which means that the computational load grows quickly with the number of
components. Recently, a faster and asymptotically equivalent estimate with JADE
was found in [9], where the joint use of third and fourth moments in ICA was
studied. The squared symmetric FastICA is obtained, when the absolute values of
the regular symmetric FastICA are replaced by squares, i.e., we maximize, under
the orthogonality constraint,

(E((u′1xst)
4)− 3)2 + . . .+ (E((u′pxst)

4)− 3)2.

3 Asymptotic properties of the JADE estimate

Let Z = (z1, . . . ,zn) be a random sample from a distribution satisfying (A1), (A2),
and in addition to (A3), at least one of the following assumptions.

(A4) The fourth moments of z exist, and at most one of the kurtosis values κk =
E(z4

ik), k = 1, . . . , p, is zero.

(A5) The fourth moments of z exist and are distinct.

For the independent components zik, k = 1, . . . , p, write also γk = E(z3
ik) and

σ2
k = V ar(z3

ik).

The limiting distributions of all four unmixing matrix estimates based on fourth
moments depend on the joint limiting distribution of

√
n ŝkl =

1√
n

n∑
i=1

zikzil and
√
n r̂kl =

1√
n

n∑
i=1

(z3
ik − γk)zil,



92 Miettinen, Nordhausen, Oja and Taskinen -- ICA Based on Fourth Moments

k 6= l = 1, . . . , p. For the FOBI estimate we would also need

√
n r̂mkl =

1√
n

n∑
i=1

z2
imzikzil,

for distinct k, l,m = 1, . . . , p.

The JADE estimate is Ŵ = ÛΣ̂−1/2, where Û solves the estimating equations
u′iT (uj) = u′jT (ui) and u′iuj = δij , i, j = 1, . . . , p. Here δij is the Kronecker
delta and

T (u) =

p∑
i=1

p∑
j=1

(u′Ciju)Ciju.

The following theorem for the JADE estimate was given in [8], where you can
also find the corresponding results for the other estimates, and the references to

the articles where they were first given in. We consider the distribution of Ŵ =
W (Z), i.e., the case Ω = Ip. Due to affine equivariance of the estimate, we have
W (X) = W (Z)Ω−1 in the general case.

Theorem 19. Let Z = (z1, . . . ,zn) be a random sample from a distribution of
z with bounded eighth moments satisfying the assumptions (A1), (A2) and (A4).

Then there is a sequence of solutions Ŵ such that Ŵ →P Ip and

√
n (ŵkk − 1) = −1/2

√
n (ŝkk − 1) + oP (1), k = l, and

√
n ŵkl =

κk
√
n r̂kl − κl

√
n r̂lk +

(
3κl − 3κk − κ2

k

)√
n ŝkl

κ2
k + κ2

l

+ oP (1),

k 6= l.

Notice that the limiting distribution of
√
n ŵkl depends only on kth and lth

independent components. This holds true also for deflation-based and symmetric
FastICA. On the contrary,

√
n ŵkl of the FOBI estimate depends also on the other

components through
√
n r̂mkl, m 6= k, l. The limiting distributions of the diagonal

elements are the same for all four estimates.
Under the assumptions of Theorem 19, the central limit theorem gives the

asymptotic normality of the estimate, and the componentwise asymptotic variances
are

ASV (ŵkk) = (κk + 2)/4, and

ASV (ŵkl) =
(
κ2
k + κ2

l

)−2 (
κ2
k(σ2

k − κ2
k − 6κk − 9) + κ2

l (σ
2
l − 6κl − 9)

)
, k 6= l

Since the effect of the term
√
n r̂mkl is rather minor in FOBI, the comparison of

the estimates can be reduced to the comparison of the sum ASV (ŵkl) +ASV (ŵlk)
for selected kth and lth component distributions.

4 Comparison of the estimates

Besides the fact that JADE and squared symmetric FastICA are asymptotically
equivalent, we have the following facts, when Ω = Ip.



Proceedings of the 19th EYSM in Prague 2015 93

1.
√
n ŵkl of the symmetric FastICA estimate and that of the JADE estimate are

asymptotically equivalent if the kth and lth marginal distributions are the same,
2. If the independent components are identically distributed, then the symmetric
FastICA and JADE estimates are asymptotically equivalent. In this case, the sum
of the asymptotic variances of the off-diagonal elements is one half of that of the
deflation-based FastICA estimate. The FOBI estimate fails in this case.
3. ASV (ŵkl) of the FOBI estimate is always larger than or equal to that for
symmetric FastICA, k 6= l. The variances are equal when p = 2 and κk > 0 > κl.
4.
√
n ŵkp of the deflation-based FastICA estimate and of the JADE estimate are

asymptotically equivalent if the pth marginal distribution is normal.

Wide comparisons of the asymptotic variances in [8] expressed that JADE and
the symmetric FastICA perform best in most cases, and their asymptotic variances
are quite close to each other. The main difference between these two estimators
appears when one of the components has a normal distribution. Then JADE
outperforms symmetric FastICA.
Acknowledgements: This research was supported by the Academy of Finland
(grants 251965, 256291 and 268703).
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Computational Aspects of Parameter Estimation
in Ordinary Differential Equation Systems
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Abstract: Ordinary differential equation (ODE) systems are widely applicable in
many branches of the natural sciences. They are especially valuable for analysing
entire networks of processes with no internal noise. Though simple from a statis-
tical point of view, the applicability of these models are usually hindered by their
computational complexity. In this work I present a selection of current methods
to cope with the computational aspects of estimating parameters in ODE systems.
Based on some of these methods, I present an algorithm for finding maximum
likelihood estimates (MLE) with certain computational qualities.

Keywords: ODE systems, parameter estimation, non-linear least squares, com-
putational statistics

AMS subject classifications: 62J02

1 Introduction

We have in mind a d-dimensional ordinary differential equation system:

ẋ = f(x, θ), x ∈ Rd (1)

parametrised by a p-dimensional vector θ ∈ Rp. For given θ, a solution to (1) is a
function ψθ : R→ Rd, such that

ψθ(t) = ψθ(0) +

∫ t

0

f(ψθ(s), θ) ds, for all t ∈ R. (2)

We observe the state of the system at discrete time points 0 = t1 < t2 < ... < tn
with independent Gaussian noise:

yj = ψθ(tj) + εj , εj
i.i.d.∼ N (0, σ2Id) (3)

for j = 1, ..., n. The negative log-likelihood is directly available (σ2 is omitted):

`y(θ) =
1

2

n∑
j=1

‖yj − ψθ(tj)‖22. (4)

This modelling framework for ODE systems is therefore quite simple from a statis-
tical point of view. However, as explained below, optimising (4) is rather difficult
from a computational angle.

∗Corresponding author: frm@math.ku.dk
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2 The optimisation problem

Finding the maximum likelihood estimator reduces to solving a non-linear least
squares problem, due to (4). However, evaluating the likelihood requires solutions
of the underlying ODE system. Various numerical methods for finding approxima-
tive solutions exist, but are relatively time consuming. Specifically, employing an
explicit Runge-Kutta scheme of size s (see e.g. section 17 in [5] for details) the
number of evaluations of f is sT

δ . Here δ is the step size and T is the time span. For
such a scheme the global truncation error is O (Tδp), for some scheme-dependent
p ≤ s. Using an implicit Runge-Kutta scheme, instead, leads to a smaller global
truncation error, but raises the number of evaluations of f and is O

(
dsT
δ

)
in best

case scenarios.
The number of f -evaluations is substantial for assessing the computational com-

plexity of evaluating `y. Though linear in each variable (considering 1/δ as mea-
suring the mesh), the number of f -evaluations is typically large. Consequently, in
order to optimise (4) efficiently, a minimal number of evaluations of `y is prefer-
able, especially when the observed time points cover a large time span or the ODE
system is stiff.

3 Methods

3.1 Gauss-Newton approach (shooting)

From a numerical optimisation perspective, `y has the valuable property of being
a sum of squares. Thus the classical Gauss-Newton algorithm is typically a first
choice for the optimisation scheme. The Gauss-Newton algorithm has the same
rate of convergence as most second order approximation algorithms, but requires
no computations of the hessian matrix (see e.g. section 10 in [6] for details).
However, calculating the gradient of `y:

∇θ`y(θ) = −
n∑
j=1

(yj − ψθ(tj))′Dθψ(tj) (5)

amounts to deriving Dθψ. This differential is typically only available as a solution
to the matrix differential equation system

˙Dθψ =
∂f

∂x
(ψ(t), θ)Dθψ +

∂f

∂θ
(ψ(t), θ). (6)

Consequently, employing the Gauss-Newton algorithm requires solving (1) and (6)
simultaneously at each step. Using an explicit Runge-Kutta scheme of size s, this
amounts to evaluating f , ∂f

∂x and ∂f
∂θ , sT

δ times at each step of the optimisation.
Subsequently, for large and complex systems, evaluating the gradient of `y is either
extremely time consuming or close to impossible.

There are numerous variations of the above approach (see, e.g., [3] for a more
sophisticated version). They are often referred to as shooting methods, inspired
by the shooting method from boundary value problems. These methods typically
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rely on general optimisation algorithms and will therefore not exploit all essential
features of ODE systems. The remaining algorithms incorporate these features by
considering, e.g., the functional nature of the data.

3.2 Generalised smoothing approach (collocation)

Certain implicit Runge-Kutta schemes are so-called collocation methods. They
rely on the principle that an approximative solution to (1) can be found in some
finite dimensional function space, typically spanned by a set of spline functions.
The collocation method therefore amounts to finding an element of the function
space that satisfy (1) in some pre-specified time points, called collocation points.
This approach is the inspiration to various parameter estimation methods in ODE
systems. The following method is due to Ramsay et. al, see [4]:

This approach relies on the approximation of ψθ given by

ψθ(t) ≈ ϕ(t)′ĉθ for t ∈ [0, tn]. (7)

Here ϕ is a vector of univariate basis functions, which combined with the vector ĉθ
of coefficients yields an approximative solution to (1). The parameter dependence
θ 7→ ψθ is therefore passed on to θ 7→ ĉθ. The least squares criterion:

J(c, θ) =
∑
j

‖yj − ϕ(tj)
′c‖22 + λ

∫ tn

t1

‖ϕ̇(t)′c− f(ϕ(t)′c, θ)‖22 dt (8)

is proposed, where λ > 0 is a tuning parameter shifting the weight between the
data fitting criterion and the so-called fidelity measure of ϕ′c. Applying profiling
methods to (8), ĉθ appears as the minimum of c 7→ J(c, θ). If f is linear in x, the
minimisation problem reduces to a linear least squares problem, thus providing an
analytical expression for θ 7→ ĉθ.

By introducing this approach, some of the tools of functional data analysis is
suddenly available, which provide new insightful views on the estimation problem.
However, it is worth considering the influence of the choice of ϕ on the inference.
Moreover, the relation between optimising a family of semi-norms parametrised by
λ (the criterion J in (8)) and the actual MLE defined through (4) is not completely
clear. Finally, for non-linear systems, optimising c 7→ J(c, θ) and θ 7→ J(ĉθ, θ) using
gradient based methods still require evaluating ∂f

∂x and ∂f
∂θ many times (depending

on how the integral in (8) is approximated).

3.3 Gradient/integral matching

The core principle of this method is: if the whole noiseless curve ψ is observed,
then θ can be inferred by minimising

∫ tn

t1

∥∥∥ψ̇(t)− f(ψ(t), θ)
∥∥∥2

2
dt, or

∫ tn

t1

∥∥∥∥ψ(t)− ψ(t1)−
∫ t

t1

f(ψ(s), θ)ds

∥∥∥∥2

2

dt. (9)
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We therefore consider the estimator, that takes a non-parametric estimate of ψ, ψ̂,
and returns the value of θ minimising (9):

ψ̂ 7→ arg min
θ

∫ tn

t1

∥∥∥∥ψ̂(t)− ψ(t1)−
∫ t

t1

f(ψ̂(s), θ)ds

∥∥∥∥2

2

dt. (10)

If ψ(t1) is unknown, it can be included in the parameter vector θ. In [1] the author
proves that if the above map is applied to a consistent non-parametric estimator,
the resulting estimator of θ is also consistent, under mild regularity assumptions.
Additionally, he also finds conditions for asymptotic normality.

This approach truly flourishes when applied to systems in which f is linear in
θ (and not necessarily linear in x). In such cases (10) reduces to a linear least
squares problem, which can be solved even for very large and complex systems,
i.e., for large n and p. Furthermore, one can introduce, e.g., `1-penalties to (10)
and apply the method to systems with p >> nd and still have computationally
stable methods for finding solutions.

Brewer et al. ([2]) proposed an iterative procedure exploiting the qualities of
this type of gradient matching. More precisely, they consider a fitting criterion
resembling that of [4]:∑

j

‖yj − ϕ(tj)
′c‖22 + λ

∑
r

‖ϕ̇(tr)
′c− f(ϕ(tr)

′c̃, θ)‖22 (11)

where r is allowed to run over a finer (or coarser) grid than j. The iterations consist
of letting c̃ be fixed and then estimate (c, θ) as the linear least squares estimates of
(11). The estimate of c then enters as c̃ in the next iteration. By applying gradient

matching iteratively one avoids choosing a specific ψ̂, as opposed to a non-iterative
gradient matching.

Similarly to the generalised smoothing approach, this method has the following
important strength: the optimisation problem and the ODE-solution problem are
separated. Thus evaluating the fitting criterion is inexpensive and evaluating the
gradient (typically) requires less calculations of ∂f

∂x and ∂f
∂θ .

The method described above is applicable to many non-trivial systems and can
handle large and sparse models. However, there are things to consider: the iterative
procedure is still dependent on the choice of ϕ. It is also unclear how optimising
the criterion (11) is related to the MLE given through (4). Finally, it is nontrivial
whether this sequence of iterative estimates of (c, θ) converge to the optimum of
(11) (if it converges at all).

4 Combining algorithms

Returning to the original problem of minimising (4), we required relatively few
evaluations of `y and ∇`y. In this section we consider a new algorithm based on
the above, which yields the actual MLE (a quality of the shooting methods) and
still exploits the computationally attractive aspects of gradient matching.

Firstly, given a current estimate of θ, denoted θk in the iterative procedure, we
calculate an approximative solution curve ψθk . Then we perform integral matching
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Initialisation:
k = 0

θ0 provided

Descent
Direction:

Find descent
direction pk, e.g.,
Gauss-Newton

Stop
‖pk‖ < δ

Backtracking:
Find backtracking
constant α, e.g.,
via line search

‖pk‖ ≥ δ

Update:
k := k + 1

θk := θk + αpk

Initialisation:
k = 0

θ0 provided

Oracle:
Find oracle
direction pok.
Set pk = pok.

Descent
Direction:

Find descent
direction pk, e.g.,
Gauss-Newton

‖pk‖ < δ
Stop

‖pk‖ < δ

Backtracking:
Find backtracking
constant α, e.g.,
via line search

‖pk‖ ≥ δ
‖pk‖ ≥ δα < ε

Update:
k := k + 1

θk := θk + αpk

α ≥ ε

Figure 1: Flowcharts of a generic line search algorithm with and without an oracle.

between the curve and the observations. The resulting estimate of θ:

θoracle
k = arg min

θ

n∑
j=1

∥∥∥∥yj − ψ(t1)−
∫ tj

t1

f(ψθk(s), θ)ds

∥∥∥∥2

2

. (12)

is called the oracle estimate. We denote poracle
k = θoracle

k − θk the oracle direction.
In general it is not certain that `y(θoracle

k ) < `y(θk), hence a backtracking of poracle
k

must be employed in order to gain a descent:

θk+1 = θk + αporacle
k

for some α ∈ [0, 1]. However, it is not even certain that poracle
k is a descent direction!

In which case, the backtracking will fail to find a positive α within numerical
tolerance. In this case, no benefit from the oracle is gained. The algorithm then
passes on to some classic optimisation scheme, e.g., Gauss-Newton. Once a single
Gauss-Newton update is done, the algorithm returns to the oracle for the next
iterate. A generic line search optimisation algorithm with and without an oracle
are visualised by two flowcharts in figure 1.

This algorithm maintains the convergence properties of the Gauss-Newton al-
gorithm, while benefiting from computational advantages possessed by the oracle.
In practice the oracle mostly provides excellent descent directions and the Gauss-
Newton part will only be invoked to verify that the final iterate is an approximative
local minima.
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5 Discussion and further work

The new combined algorithm presented above has been implemented and tested on
simulated data from mass action kinetics models. The results look promising both
for large and small σ2, along with high and low frequency data. In these studies the
oracle always provided a descent direction. Intuitively this is not true in general, as
the algorithm will perform poorly for stiff or chaotic systems. The computationally
heavy part of the algorithm is the Gauss-Newton part. Consequently, it is of
high interest to find conditions that ensure the oracle alone provides the descent
directions necessary to find MLE.

Additionally, the algorithm can be extended to parameter estimation with
forced sparsity, e.g., using `p penalties. This is relevant for estimating unknown
model structures. However, when introducing such penalties the algorithm has to
be revised in order to accommodate potential lack of smoothness.

Acknowledgements: A great thanks to Professor Niels Richard Hansen and Mar-
tin Vincent of Department of Mathematical Sciences at University of Copenhagen
for guidance and many insightful discussions.
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Abstract: In this work we use the theory Fψ(Ω) spaces in order to find the
accuracy and reliability for the calculation of the improper integrals depending on
a parameter t by Monte Carlo method.
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1 Introduction

In this paper we developed a theory for finding the reliability and accuracy for
the calculation of integrals depending on a parameter by Monte-Carlo method in
Lp(T ) metrics.

There are many works devoted to the usage of the Monte-Carlo methods for
calculation of integrals. Among them are the books by Yermakov [1] and Yermakov
& Mikhailov [2].

The paper by Kurbanmuradov & Sabelfeld [7] contains the estimate for the
accuracy in the space C(T ) and reliability for the calculation of integrals depending
on a parameter if the set of integration is bounded. To obtain these results the
theory of sub-Gaussian processes had been used.

The space Fψ(Ω) was introduced by Yermakov & Ostrovsky in the paper [3].
The paper [5] is devoted to studying the properties of such spaces and there had
been found the conditions of fulfilling the condition H (see Definition 10) in this
spaces. The condition H is necessary for finding the reliability and accuracy when
we calculate integrals by Monte-Carlo method.

The choice of the space depends on particular integral and allows to find better
accuracy. In this paper, the accuracy is defined via the norm in Lp(T ) space.

2 Fψ(Ω) – space

Definition 9. [6] Let ψ(u) > 0, u ≥ 1 be monotonically increasing, continuous
function for which ψ(u)→∞ as u→∞. A random variable ξ belongs to the space
Fψ(Ω) if

sup
u≥1

(E |ξ|u)
1/u

ψ(u)
<∞.

∗Corresponding author: yura-mlavec@ukr.net
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The similar definition was formulated in the paper by S. M. Yermakov & Ye. I.
Ostrovskii [3]. But there was required that Eξ = 0 as ξ ∈ Fψ(Ω). Moreover, there
were considered the random variables for which E |ξ|u =∞ for some u > 0.

It had been proved in [3] that Fψ(Ω) is a Banach space with a norm

‖ξ‖ψ = sup
u≥1

(E |ξ|u)
1/u

ψ(u)
.

Theorem 20. [6] If a random variable ξ belongs to the space Fψ(Ω), then for any
ε > 0 the following inequality holds true:

P {|ξ| > ε} ≤ inf
u≥1

‖ξ‖uψ (ψ(u))u

εu
.

Theorem 21. [6] If a random variable ξ belongs to the space Fψ(Ω) and ψ(u) =
uα, where α > 0, then for any ε ≥ eα ‖ξ‖ψ the following inequality is true:

P {|ξ| > ε} ≤ exp

−αe
(

ε

‖ξ‖ψ

)1/α
 .

Definition 10. [5] We say that the condition H for the Banach spaces B(Ω) of
random variables is fulfilled if there exists such an absolute constant CB that for any
centered and independent random variables ξ1, ξ2, . . . , ξn from B(Ω) the following
is true: ∥∥∥∥∥

n∑
i=1

ξi

∥∥∥∥∥
2

≤ CB
n∑
i=1

‖ξi‖2 .

The constant CB is called a scale constant for the space B(Ω). For space Fψ(Ω)
we shall denote the constants CFψ(Ω) as Cψ.

Theorem 22. [8] For the space Fψ(Ω), where ψ(u) = uα, α ≥ 1
2 the condition H

is fulfilled and it is true the following inequality:∥∥∥∥∥
n∑
i=1

ξi

∥∥∥∥∥
2

ψ

≤ 4 · 9α
n∑
i=1

‖ξi‖2ψ .

Note, that when α < 1
2 then the condition H is not fulfilled for this space.

3 Estimates in the norm Lp(T ) for the stochastic
processes from the spaces Fψ(Ω)

Theorem 23. Let ν be the σ-finite measure on the compact metric space (T, ρ)
and X = {X(t), t ∈ T} be a measurable stochastic process from the space Fψ(Ω).
If for some p ≥ 1 the following condition is true∫

T

‖X(t)‖pψ dν(t) <∞,

then
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1) the integral
∫
T

|X(t)|p dν(t) exists with probability one and the inequality holds

true: ∥∥∥∥∥∥∥
∫
T

|X(t)|p dν(t)

1/p
∥∥∥∥∥∥∥
ψ

≤ ψ(p)

ψ(1)

∫
T

‖X(t)‖pψ dν(t)

1/p

;

2) for any ε > 0 the following inequality holds:

P


∫
T

|X(t)|p dν(t)

1/p

> ε

 ≤

≤ inf
u≥1

(
ψ(p)
ψ(1)

)u(∫
T

‖X(t)‖pψ dν(t)

)u/p
(ψ(u))u

εu
.

Example 1. Consider the space Fψ(Ω), where ψ(u) = uα, α > 0. It follows from

the Theorems 23 and 21 that for ε ≥ (ep)α
(∫
T

‖X(t)‖pψ dν(t)

)1/p

P


∫
T

|X(t)|p dν(t)

1/p

> ε

 ≤

≤ exp

−
α

ep

 ε(∫
T

‖X(t)‖pψ dν(t)

)1/p


1/α
 .

Theorem 24. Let ν be a σ-finite measure on a compact metric (T, ρ) and Y =
{Y (t), t ∈ T} be the stochastic process from the space Fψ(Ω) and the condition
H is fulfilled for this space with the constant Cψ. Let EY (t) = m(t), Zn(t) =

1
n

n∑
k=1

Yk(t) −m(t) = 1
n

n∑
k=1

(Yk(t) −m(t)), where Yk(t) are the independent copies

of Y (t). Then the following inequality holds for all p ≥ 1

∥∥∥∥∥∥∥
∫
T

|Zn(t)|p dν(t)

1/p
∥∥∥∥∥∥∥
ψ

≤ 2
√
Cψ√
n
· ψ(p)

ψ(1)

∫
T

‖Y (t)‖pψ dν(t)

1/p
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and for every ε > 0 the following estimate is true

P


∫
T

|Zn(t)|p dν(t)

1/p

> ε

 ≤

≤ inf
u≥1

(
2
√
Cψ√
n
· ψ(p)
ψ(1)

)u(∫
T

‖Y (t)‖pψ dν(t)

)u/p
(ψ(u))u

εu
.

Example 2. Let us consider the space Fψ(Ω), where ψ(u) = uα, α > 0 then it

follows from the Theorems 24 and 21 that if ε ≥ (ep)α
2
√
Cψ√
n

(∫
T

‖Y (t)‖pψ dν(t)

)1/p

P


∫
T

|Zn(t)|p dν(t)

1/p

> ε

 ≤

≤ exp

−
α

ep

 ε

2
√
Cψ√
n

(∫
T

‖Y (t)‖pψ dν(t)

)1/p


1/α
 .

4 Reliability and accuracy in the space Lp(T ) for
the calculation of integrals depending on a pa-
rameter

Let {S,A, µ} be a measurable space, µ be a σ-finite measure and p(s) ≥ 0, s ∈ S be
such measurable function that

∫
S
p(s)dµ(s) = 1. Let m(A), A ∈ A be the measure

m(A) =
∫
A

p(s)dµ(s). m(A) is a probability measure and the space {S,A,m} is a

probability space.

Let us consider the integral
∫
S
f(s, t)p(s)dµ(s) = I(t) assuming that it exists.

Let the function f(s, t) depend on the parameter t ∈ T , where (T, ρ) is some
compact set and the function f(s, t) be continuous with regard to t.

Suppose f(s, t) is the stochastic process on {S,A,m} and we denote it as
ξ(s, t) = ξ(t) and I(t) =

∫
S
f(s, t)p(s)dµ(s) =

∫
S
f(s, t)dm(s) = Eξ(t).

Let ξi(t), i = 1, 2, . . . , n be the independent copies of the stochastic process

ξ(t), Zn(t) = 1
n

n∑
i=1

ξi(t). So, according to the strong law of large numbers Zn(t)→
Eξ(t) = I(t) with probability one for any t ∈ T .
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Definition 11. We say that Zn(t) approximates I(t) in the space Lp(T ) with
reliability 1− δ > 0 and accuracy ε > 0 if the following inequality holds true:

P


∫
T

|Zn(t)− I(t)|p dµ(t)

1/p

> ε

 ≤ δ.
Theorem 25. Let I(t) = Eξ(t) =

∫
S
f(s, t)p(s)dµ(s), ξ(t) be the stochastic process

which belongs to the space Fψ(Ω) satisfying the condition H with constant Cψ,

Z̃n(t) = 1
n

n∑
i=1

(ξi(t)− I(t)), ξi(t) be the independent copies of the stochastic process

ξ(t).
Then, for all p ≥ 1 the following inequality holds true∥∥∥∥∥∥∥

∫
T

∣∣∣Z̃n(t)
∣∣∣p dµ(t)

1/p
∥∥∥∥∥∥∥ ≤

2
√
Cψ√
n
· ψ(p)

ψ(1)

∫
T

‖ξ(t)‖pψ dµ(t)

1/p

,

and Z̃n(t) approximates I(t) with reliability 1−δ and accuracy ε in the space Lp(T )
for such n that

inf
u≥1

(
2
√
Cψ√
n
· ψ(p)
ψ(1)

)u(∫
T

‖ξ(t)‖p dµ(t)

)u/p
(ψ(u))u

εu
≤ δ. (1)

Example 3. Consider the space Fψ(Ω), where ψ(u) = uα, α > 1
2 . Then the

Theorem 22 implies that the condition H is fulfilled for this space with the constant
Cψ = 4 · 9α. It follows from the Example 2 and the Theorem 25 that if ε ≥
4(3pe)α

(∫
T

‖ξ(t)‖pψdµ(t)

)1/p

√
n

, then

inf
u≥1

(
2
√
Cψ√
n
· ψ(p)
ψ(1)

)u(∫
T

‖ξ(t)‖p dµ(t)

)u/p
(ψ(u))u

εu
≤

≤ exp

−
α

e


√
nε

4(3pe)α
(∫
T

‖ξ(t)‖pψ dµ(t)

)1/p


1/α
 .

So, the inequality (1) holds if it is true that

exp

−
α

e


√
nε

4(3pe)α
(∫
T

‖ξ(t)‖pψ dµ(t)

)1/p


1/α
 ≤ δ,
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as

n ≥


4(3pe)α

(∫
T

‖ξ(t)‖pψ dµ(t)

)1/p

ε


2 (

(− ln δ)
e

α

)2α

.

Then

n ≥


4(3p)α

(∫
T

‖ξ(t)‖pψ dµ(t)

)1/p

ε


2

max

(
1,

(
− ln δ

α

)2α
)
.
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Behavior of Rank Tests and R-Estimates in
Measurement Error Models

Radim Navrátil∗

Masaryk University, Brno, Czech Rep.

Abstract: Behavior of rank tests and R-estimates in presence of measurement
errors is studied. It is showed that rank tests of some hypotheses stay valid in mea-
surement error models. The presence of measurement errors only decreases their
power. Unlike that R-estimates in measurement error models are biased. Unfortu-
nately this bias cannot be corrected without any knowledge of the distribution of
measurement errors.

Keywords: aligned rank tests, measurement error models, rank tests, R-estimates

AMS subject classifications: 62G10, 62G30

1 Introduction

Measurement error models (also called errors-in-variables models) are regression
models that account for measurement errors in the independent variables (regres-
sors). These models occur very commonly in practical data analysis, where some
variables cannot be observed exactly, usually due to instrument or sampling error.
Sometimes ignoring measurement error may lead to correct conclusions, however
in some situations it may have dramatic consequences.

The most of the literature about measurement error models uses parametric ap-
proach with its restrictive normality assumptions or a knowledge of some additional
information about error distribution (see e.g. [1]). We avoided this and introduced
a class of rank tests that is valid even if measurement errors are present. The main
goal of this paper is to investigate the behavior of standard rank procedures in
measurement error models - both tests and estimates. Proofs of the theorems are
omitted, but they may be found in [3] and[4].

2 Behavior of rank tests in measurement error
models

Consider classical linear regression model

Yi = β0 + x>i β + ei, i = 1, . . . , n, (1)

∗Corresponding author: navratil@math.muni.cz
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where β0 ∈ R and β ∈ Rp are unknown parameters, model errors ei are assumed
to be independent identically distributed (i.i.d.) with an unknown distribution
function F and density f , xi are vectors of known regressors, such that

Qn =
1

n

n∑
i=1

(xi − x)(xi − x)>, with x =
1

n

n∑
i=1

xi

is a positive definite matrix (further on we will tacitly assume that this holds). Our
aim is to test the hypothesis H0 : β = 0 against K0 : β 6= 0.

Choose a nondecreasing, nonconstant, square integrable score generating func-
tion
ϕ : (0, 1) 7→ R and define

an(i) = ϕ

(
i

n+ 1

)
, i = 1, . . . , n,

A2(ϕ) =

∫ 1

0

(ϕ(t)− ϕ)2dt, ϕ =

∫ 1

0

ϕ(t)dt.

Let Ri be the rank of Yi among Y1, . . . , Yn and define vector of linear rank
statistics

Sn = n−1/2
n∑
i=1

(xi − x)an(Ri).

Test criterion for H0 is then

T 2
n = A−2(ϕ)S>nQ−1

n Sn. (2)

Assume that f has finite Fisher information with respect to the location

0 < I(f) =

∫ (
f ′(x)

f(x)

)2

f(x)dx <∞ (3)

and there exists a positive definite matrix Q, such that as n→∞

Qn → Q, (4)

1

n
max

i=1,...,n
(xi − x)>Q−1

n (xi − x)→ 0. (5)

Remark 3. Generally, Fisher information is defined for parametric family d(x, θ)
of densities as

I(d, θ) =

∫ ( ∂
∂θd(x, θ)

d(x, θ)

)2

d(x, θ)dx.

If θ is a location parameter, i.e. d(x, θ) = f(x− θ), then I(d, θ) = I(f).

Theorem 26. Assume that (3) – (5) hold. Then in model (1) under H0 test
statistic T 2

n has asymptotically as n→∞ χ2 distribution with p degrees of freedom
and under sequence of local alternatives

K0,n : β = n−1/2β∗, 0 6= β∗ ∈ Rp fixed
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T 2
n has asymptotically as n→∞ noncentral χ2 distribution with p degrees of free-

dom and noncentrality parameter

η2 = β∗>Qβ∗
γ2(ϕ, f)

A2(ϕ)
, γ(ϕ, f) =

∫ 1

0

ϕ(t)ϕ̃(t, f)dt, ϕ̃(t, f) = −f
′(F−1(t))

f(F−1(t))
.

2.1 Model with errors in regressors

Measurement error model assumes that regressors xi are not observed accurately,
but only with an additive, unobservable, error vi, i.e. we observe wi = xi + vi
instead of xi, where v1, . . . ,vn are i.i.d. random vectors independent of e1, . . . , en.
In other words, we may write

Yi = β0 + x>i β + ei, (6)

wi = xi + vi, i = 1, . . . , n.

Denote T 2
w,n test statistic (2) based on observed values (Yi,wi). It is easy

to show that T 2
w,n has under H0 the same distribution as T 2

n . The presence of
measurement errors only decreases power of the test.

2.2 Aligned rank tests

However, we are often more interested in testing hypothesis only about a component
of the parameter β, identify regressors that have influence on response variable.
Denote

β = (β>1 ,β
>
2 )>, xi = (x>1,i,x

>
2,i)
>,

vi = (v>1,i,v
>
2,i)
>, wi = (w>1,i,w

>
2,i)
>,

where β1 ∈ Rp−q, β2 ∈ Rq, x1,i ∈ Rp−q, x2,i ∈ Rq, v1,i ∈ Rp−q, v2,i ∈ Rq,
w1,i ∈ Rp−q, w2,i ∈ Rq, 1 ≤ q < p. Then model (6) can be rewritten as

Yi = β0 + x>1,iβ1 + x>2,iβ2 + ei,

w1,i = x1,i + v1,i, (7)

w2,i = x2,i + v2,i, i = 1, . . . , n.

Our goal is to test the hypothesis H1 : β2 = 0 against K1 : β2 6= 0, considering
β0 and β1 as nuisance parameters.

Rank tests are invariant with respect to the location, but not to the nuisance
regression. That is why we have to first estimate the nuisance parameter β1 and
then apply the standard test on residuals. Due to the absence of knowledge of
distribution of model errors and to preserve robust properties we use an R-estimator
of parameter β1.

Model (7) under H1 reduces to Yi = β0 + w>1,iβ1 + e∗i , where e∗i = ei − v>1,iβ1

are i.i.d. random variables with density f∗ = f∗β1
.

Choose a nondecreasing, nonconstant, square integrable score generating func-
tion ψ : (0, 1) 7→ R that is skew-symmetric, i.e. ψ(1− t) = −ψ(t), ∀ 0 < t < 1
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and define ãn(i) = ψ
(

i
n+1

)
, i = 1, . . . , n. Following [2] we define the rank

(pseudo)estimator β̂1,n of β1 as a minimizer of

Dn(b) =

n∑
i=1

(
Yi −w>1,ib

)
ãn(Ri(b))

with respect to b ∈ Rp−q, where Ri(b) is the rank of (Yi −w>1,ib) among

(Y1 −w>1,1b), . . . , (Yn −w>1,nb).
Now, consider residuals

êi = Yi −w>1,iβ̂1,n, i = 1, . . . , n

and apply the test described in Section 2 on residuals ê1, . . . , ên. Note that unlike
the situation in Section 2 residuals êi are not independent, because they depend on
the R-estimate of nuisance parameter β1. However under some assumptions this
fact does not affect the asymptotic distribution.

Hence choose a nondecreasing, nonconstant, square integrable score generating

function ϕ : (0, 1) 7→ R (it may differ from ψ) and define an(i) = ϕ
(

i
n+1

)
, i =

1, . . . , n and compute

Ŝn = n−1/2
n∑
i=1

(w2,i −w2)an(Ri(β̂1,n)),

where Ri(β̂1,n) is the rank of êi among ê1, . . . , ên. Denote

D1,n =
1

n

n∑
i=1

(w1,i −w1)(w1,i −w1)>, D2,n =
1

n

n∑
i=1

(w2,i −w2)(w2,i −w2)>.

Finally, consider test statistic

T̂ 2
n = A−2(ϕ)Ŝ>nD−1

2,nŜn.

Assume that there exist positive definite matrices Q1,Q2,C1,C2, such that

Q1,n =
1

n

n∑
i=1

(x1,i − x1)(x1,i − x1)> → Q1, (8)

C1,n =
1

n

n∑
i=1

(v1,i − v1)(v1,i − v1)>
p→ C1, (9)

1

n
max

i=1,...,n
(w1,i −w1)>D−1

1,n(w1,i −w1)→ 0, (10)

Q2,n =
1

n

n∑
i=1

(x2,i − x2)(x2,i − x2)> → Q2, (11)

C2,n =
1

n

n∑
i=1

(v2,i − v2)(v2,i − v2)>
p→ C2, (12)

1

n
max

i=1,...,n
(w2,i −w2)>D−1

2,n(w2,i −w2)→ 0. (13)
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Finally, we are able to describe asymptotic distribution of T̂ 2
n .

Theorem 27. Assume that (3), (8) – (13) hold. Then in model (7) under H1 test

statistic T̂ 2
n has asymptotically as n→∞ χ2 distribution with q degrees of freedom

and under local alternative

K1,n : β2 = n−1/2β∗2, 0 6= β∗2 ∈ Rq fixed

T̂ 2
n has asymptotically noncentral χ2 distribution with q degrees of freedom and

noncentrality parameter

η̂2 = β∗>2 Q2(Q2 + C2)−1Q2β
∗
2

γ2(ϕ, f∗)

A2(ϕ)
.

Recall that f∗ depends on unknown nuisance parameter β1 and distribution of
measurement errors v1,i, hence the asymptotic power of the test does depend on
the nuisance parameter β1 unlike the situation without measurement errors.

3 Behavior of R-estimates in measurement error
models

Now, we are interested in R-estimator of the slope vector β in model (6), considering
β0 as nuisance parameter. In the previous section we already needed to estimate the
nuisance slope parameter. Hence, there was developed the idea to use R-estimates
in measurement error models. Unfortunately, like other classical estimates they are
also (asymptotically) biased.

Remind briefly the approach already used in the previous section. Let Ri(b)
be the rank of the residual Yi−w>i b, i = 1, . . . , n and denote the vector of linear
rank statistics

Sn(b) = n−1/2
n∑
i=1

(wi −w)an(Ri(b)),

where the scores an(i) = ψ
(

i
n+1

)
are generated by square integrable score function

ψ that is skew-symmetric on (0, 1). [2] defined the rank estimator β̂n of β as a
minimizer of

Dn(b) =

n∑
i=1

(
Yi −w>i b

)
an(Ri(b)) with respect to b ∈ Rp.

We are able to study asymptotic properties of β̂n in the presence of measurement
errors and find its local asymptotic bias only in a neighborhood of true value of
the parameter β, i.e. under local alternative βn = n−1/2β∗ with a fixed β∗ ∈ Rp.

In the sequel, all limits are taken as n → ∞, unless mentioned otherwise. We
shall now describe the needed assumptions on the underlying entities.

F.1 F has an absolutely continuous density f and derivative f ′ a.e. and has
positive and finite Fisher information I(f).
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F.2 For every u ∈ R,
∫ (
|f ′(x− tu)|j/f j−1(x))dx→

∫ (
|f ′(x)|j/f j−1(x))dx <∞,

as t→ 0, j = 2, 3.

V.1 The measurement errors vi are independent of ei and have p-dimensional
distribution function G with a continuous density g.

V.2 ECn → C, where Cn = n−1
∑n
i=1(vi−v)(vi−v)> and C is a positive definite

matrix. Moreover, supn≥1 E
(
‖vn‖3 + ‖xn‖3

)
<∞.

V.3 E
[
n−1

∑n
i=1(vi − v)(xi − x)>

]
→ 0.

X.1 If the regressors xi are nonrandom, then assume that Qn → Q, where

Qn =
1

n

n∑
i=1

(xi − x)(xi − x)>,

and Q is a positive definite matrix. Moreover,

1

n
max

1≤i≤n
(xi − x)>Q−1

n (xi − x)→ 0.

X.2 If the regressors xi are random, then assume that they are independent of
ei, vi, i = 1, . . . , n, and

E

[
1

n

n∑
i=1

(xi − x)(xi − xn)>

]
→ Q,

where Q is a positive definite matrix.

Theorem 28. Under the conditions F.1−F.2, V.1−V.3,X.1−X.2 and under
the local alternative

βn = n−1/2β∗, β∗ ∈ Rp fixed

the R-estimator β̂n in model (6) is asymptotically normally distributed with the
bias B = −(Q + C)−1C β∗, i.e.

n1/2(β̂n − βn)
d→ Np

(
B, (Q + C)−1 A2(ψ)

γ2(ψ, f)

)
.

Remark 4. In measurement error model R-estimator β̂n is asymptotically biased.
This bias depends on asymptotic variance matrix of unobserved regressors xi and
estimated parameter β. Hence it is impossible to correct it without any additional
knowledge about distribution of measurement errors vi.
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[3] J. Jurečková, H. L. Koul, R. Navrátil and J. Picek. Behavior of R-estimators
under measurement errors. To apper in Bernoulli.
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Recognition of the Objects in Digital Images
Using Weighted Fuzzy C-Means Clustering

Algorithm for Directional Data (W-FCM4DD)

Eda Özkul∗1 and Orhan Kesemen1

1Department of Statistics and Computer Sciences, Faculty of Science,
Karadeniz Technical University, 61080 Trabzon, Turkey

Abstract: Object recognition is one of the most important issues of image anal-
ysis. Dominant points of the objects in digital images provide important clues
about the recognition of the objects. Many dominant point detection algorithms
have been developed. They can be classified into two categories: corner detection
approaches and polygonal approximation approaches [2, 7, 8, 9, 10].

Dominant point detection is used for data reduction in many pattern recognition
applications. Although the small number of dominant points of an object provides
reduction of memory volume and computing time, it cannot represent the objects
sufficiently [1, 3, 4]. Specifically, if there are noises in the digital image, they can
be detected as an element of the object. They can be removed by image processing
techniques; however, this can cause to lose some of the features of the object. In
this case, some problems can occur in the determination of the dominant points of
the object.

In this study, a clustering algorithm is used to solve the problems caused by
noises. Each edge pixel of any object in the digital images can be a corner (domi-
nant) point, and its probability can be calculated various methods. The probability
of corner point of each edge pixel gives the possibility of the point. This study aims
to cluster the index of each edge pixel. For this a weighted clustering algorithm
should be used. On the other hand, indices of edge pixels are circular structure, and
this makes impossible to use linear clustering. Therefore, these pixels are converted
into circular data, and their indices are clustered with weighted fuzzy C-means
clustering algorithmn for directional data (W-FCM4DD) [5, 6]. The possibilities of
corner point of each pixel are calculated and taken as a weighted parameter in the
algorithm. Thus, these possibilities can contribute to more effectively determine
dominant point of the object. Therefore, more effective results are obtained in the
determination of the dominant points that can represent the object. Furthermore,
the optimal number of corners of the object can be determined.

Keywords: dominant point detection, W-FCM4DD algorithm, image analysis,
directional data
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Polynomial Approach to Distributions via
Sampling
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Abstract: A new use of Coefficient of Variation (CV) is presented in order to
define distribution models [5, 11] via sampling [8], connected with a great deal
of socio-economic, political, medical or biological issues. The cases of a random
variable (rv) X following increasing [9], descending or symmetric [7] probability
density function (pdf) are studied and the suitably obtained models are presented.
It is of great interest what happens when the rv X does not take values in the
whole set of real numbers or in an infinite subset of it, but the range becomes finite
and the distribution becomes truncated [1, 2, 3, 4]. In order to verify and validate
the polynomial distribution model, we check the correspondence between sample
data and models outputs [6, 10].

Keywords: coefficient of variation, polynomial, random variable, sampling, trun-
cated
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Abstract: Examination of random networks is one of the most popular topics
in discrete probability theory. A large number of random graph models has been
proposed and investigated to describe complex networks (see [2] and [3] for an
overview). During the last two decades, many types of real world networks were
studied by several researchers. It was shown that a main common characteristic
of the most of real-world networks is their scale-free nature ([1]). According to
Barabási and Albert, networks are called scale-free when the degree distribution
has a power-law tail.

In our paper, we introduce a random graph model evolving over discrete time.
The evolution of the graph is based on the interaction of N vertices. During the
evolution both the preferential attachment rule and the uniform choice of vertices
are allowed. In our model every vertex is characterized by three main parameters:
its degree and its two weights. The weights of a given vertex describes the number
and the type of its interactions. Asymptotic results for the model are presented.
Besides mathematical proof, numerical evidence is also given for the power-law
distribution.

Keywords: random graph, preferential attachment, scale-free, power law, sub-
martingale
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Abstract: We analytically investigate size and power properties of a popular
family of procedures for testing linear restrictions on the coefficient vector in a lin-
ear regression model with temporally dependent errors. The tests considered are
autocorrelation-corrected F-type tests based on prewhitened nonparametric covari-
ance estimators that possibly incorporate a data-dependent bandwidth parameter,
e.g., estimators as considered in Andrews and Monahan (1992), Newey and West
(1994), or Rho and Shao (2013). For design matrices that are generic in a measure
theoretic sense we prove that these tests either suffer from extreme size distortions
or from strong power deffciencies. Despite this negative result we demonstrate that
a simple adjustment procedure based on artificial regressors can often resolve this
problem.

Keywords: autocorrelation robustness, size distortion, power deficiency, artificial
regressors, prewhitening
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On the High Energy Behavior of Nonlinear
Functionals of Random Eigenfunctions on Sd
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Abstract: In this short survey we recollect some of the recent results on the high
energy behavior (i.e., for diverging sequences of eigenvalues) of nonlinear function-
als of Gaussian eigenfunctions on the d-dimensional sphere Sd, d ≥ 2. We present a
quantitative Central Limit Theorem for a class of functionals whose Hermite rank
is two, which includes in particular the empirical measure of excursion sets in the
non-nodal case. Concerning the nodal case, we recall a CLT result for the defect
on S2. The key tools are both, the asymptotic analysis of moments of all order for
Gegenbauer polynomials, and so-called Fourth-Moment theorems.

Keywords: Gaussian eigenfunctions, high energy asymptotics, quantitative cen-
tral limit theorems, excursion volume, Gegenbauer polynomials

AMS subject classifications: 60G60, 42C10, 60D05, 60B10

1 Introduction

Let us consider a compact Riemannian manifold (M, g) and denote by ∆M its
Laplace-Beltrami operator. There exists a sequence of eigenfunctions {fj}j∈N and
a corresponding non-decreasing sequence of eigenvalues {Ej}j∈N

∆M fj + Ejfj = 0 ,

such that {fj}j∈N is a complete orthonormal basis of L2(M), the space of square
integrable measurable functions on M. One is interested in the high energy be-
havior i.e., as j → +∞, of eigenfunctions fj , related to the geometry of both level
sets f−1

j (z) for z ∈ R, and connected components of their complementM\f−1
j (z).

One can investigate e.g. the Riemannian volume of these domains: a quantity that
can be formally written as a nonlinear functional of fj .

The nodal case corresponding to z = 0 has received great attention (for moti-
vating details see [11]).

At least for “generic” chaotic surfaces M, Berry’s Random Wave Model allows
to compare the eigenfunction fj to a “typical” instance of an isotropic, monochro-
matic random wave with wavenumber

√
Ej (see [11]). In view of this, much effort

has been first devoted to 2-dimensional manifolds such as the torus T2 (see e.g.
[4]) and the sphere S2 (see e.g. [3], [2], [8], [12]). Spherical random fields have
attracted a growing interest, as they model several data sets in Astrophysics and
Cosmology, e.g. on Cosmic Microwave Background ([5]).

More recently random eigenfunctions on higher dimensional manifolds have
been investigated: e.g. on the hyperspheres ([6]).

∗Corresponding author: rossim@mat.uniroma2.it
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1.1 Random eigenfunctions on Sd

Let us fix some probability space (Ω,F ,P), denote by E the corresponding expec-
tation and by Sd ⊂ Rd+1 the unit d-dimensional sphere (d ≥ 2); µd stands for the
Lebeasgue measure of the hyperspherical surface. By real random field on Sd we
mean a real-valued measurable map defined on (Ω × Sd,F ⊗ B(Sd)), where B(Sd)
denotes the Borel σ-field on Sd. Recall that the eigenvalues of the Laplace-Beltrami
operator ∆Sd on Sd are integers of the form −`(`+ d− 1) =: −E`, ` ∈ N.

The `-th random eigenfunction T` on Sd is the (unique) centered, isotropic real
Gaussian field on Sd with covariance function

K`(x, y) := G`;d(cos τ(x, y)) x, y ∈ Sd ,

where G`;d stands for the `-th Gegenbauer polynomial normalized in such a way
that G`;d(1) = 1 and τ is the usual geodesic distance. More precisely, setting

α`;d :=
(`+ d

2−1
`

)
, we have G`;d = α−1

`;d P
( d2−1, d2−1)

` , where P
(α,β)
` denote standard

Jacobi polynomials. By isotropy (see e.g. [5]) we mean that for every g ∈ SO(d+1),
the random fields T` = (T`(x))x∈Sd and T g` := (T`(gx))x∈Sd have the same law in
the sense of finite-dimensional distributions. Here SO(d + 1) denotes the group
of real (d + 1) × (d + 1)-matrices A such that AA′ = I the identity matrix and
detA = 1.

Random eigenfunctions naturally arise as they are the Fourier components of
those isotropic random fields on Sd whose sample paths belong to L2(Sd).

Let us consider now functionals of T` of the form

S`(M) :=

∫
Sd
M(T`(x)) dx , (1)

where M : R → R is some measurable function such that E[M(Z)2] < +∞,
Z ∼ N (0, 1) a standard Gaussian r.v. In particular, if M(·) = 1(· > z) is the
indicator function of the interval (z,+∞) for z ∈ R, then (1) coincides with the
empirical measure S`(z) of the z-excursion set A`(z) := {x ∈ Sd : T`(x) > z}.

1.2 Aim of the survey

We first present a quantitative CLT as `→ +∞ for nonlinear functionals S`(M) in
(1) on Sd, d ≥ 2, under the assumption that E[M(Z)H2(Z)] 6= 0, where H2(t) :=
t2 − 1 is the second Hermite polynomial.

For instance the above condition is fullfilled by the empirical measure S`(z) of
z-excursion sets for z 6= 0. For the nodal case which corresponds to the defect

D` :=

∫
Sd

1(T`(x) > 0) dx−
∫
Sd

1(T`(x) < 0) dx , (2)

we present a CLT for d = 2. Quantitative CLTs for D` on Sd, d ≥ 2, will be treated
in a forthcoming paper.

We refer to [7], [8] and [6] for the spherical case d = 2 and to [6] for all higher
dimensions. The mentioned results rely on both, the asymptotic analysis of mo-
ments of all order for Gegenbauer polynomials, and Fourth-Moment theorems (see
[9], [1]).
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2 High energy behavior via chaos expansions

For a function M : R→ R as in (1), the r.v. S`(M) admits the chaotic expansion

S`(M) =

+∞∑
q=0

Jq(M)

q!

∫
Sd
Hq(T`(x)) dx (3)

(see [9]) in L2(P) (the space of finite-variance r.v.’s), where Hq is the q-th Hermite
polynomial (see e.g. [10]) and Jq(M) := E[M(Z)Hq(Z)], Z ∼ N (0, 1). We have
E[S`(M)] = J0(M)µd; w.l.o.g. J0(M) = 0.

The main idea is first to investigate the asymptotic behavior of each chaotic
projection, i.e. of each (centered) r.v. of the form

h`;q,d :=

∫
Sd
Hq(T`(x)) dx (4)

and then deduce the asymptotic behavior of the whole series (3). Note that h`;1,d =
0, as T` has zero mean on Sd. By the symmetry property of Gegenbauer polynomials
([10]), from now on we can restrict ourselves to even multiples `, for which some
straightforward computations yield

Var[h`;q,d] = 2q!µdµd−1

∫ π/2

0

G`;d(cosϑ)q(sinϑ)d−1 dϑ . (5)

2.1 Asymptotics for moments of Gegenbauer polynomials

The proof of the following is in [7], [8] for d = 2 and in [6] for d ≥ 3.

Proposition 7. As `→∞, for d = 2 and q = 3 or q ≥ 5 and for d, q ≥ 3,∫ π
2

0

G`;d(cosϑ)q(sinϑ)d−1 dϑ =
cq;d
`d

(1 + o(1)) . (6)

The constants cq;d are given by the formula

cq;d :=

(
2
d
2−1

(
d

2
− 1

)
!

)q ∫ +∞

0

J d
2−1(ψ)qψ

−q
(
d
2−1

)
+d−1

dψ , (7)

where J d
2−1 is the Bessel function ([10]) of order d

2−1. The r.h.s. integral in (7) is

absolutely convergent for any pair (d, q) 6= (2, 3), (3, 3) and conditionally convergent
for d = 2, q = 3 and d = q = 3. Moreover for c4;2 := 3

2π2∫ π
2

0

G`;2(cosϑ)4 sinϑ dϑ = c4;2
log `

`2
(1 + o(1)) . (8)

From [10], as `→ +∞,∫ π
2

0

G`;d(cosϑ)2(sinϑ)d−1 dϑ = 4µdµd−1
c2;d

`d−1
(1 + o(1)) , c2;d :=

(d− 1)!µd
4µd−1

. (9)

Clearly for any d, q ≥ 2, cq;d ≥ 0 and cq;d > 0 for all even q. Moreover we can give
explicit expressions for c3;2, c4;2 and c2;d for any d ≥ 2. We conjecture that the
above strict inequality holds for every pair (d, q), and leave this issue as an open
question for future research.
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2.2 Fourth-Moment Theorems for chaotic projections

Let us recall the usual Kolmogorov dK , total variation dTV and Wasserstein dW
distances between r.v.’s X,Y : for D ∈ {K,TV,W}

dD(X,Y ) := sup
h∈HD

|E[h(X)]− E[h(Y )]| ,

where HK = {1(· ≤ z), z ∈ R}, HTV = {1A(·), A ∈ B(R)} and HW is the set of
Lipschitz functions with Lipschitz constant one.

The r.v. h`;q,d in (4) belongs to the so-called qth Wiener chaos. The Fourth-
Moment Theorem ([9]) states that if Z ∼ N (0, 1), for D ∈ {K,TV,W} we have

dD

(
h`;q,d√

Var[h`;q,d]
, Z

)
≤ CD(q)

√
cum4(h`;q,d)

Var[h`;q,d]2
, (10)

where CD(q) > 0 is some explicit constant and cum4(h`;q,d) is the fourth cumulant
of the r.v. h`;q,d. An application of (10) together with upper bounds for cumulants
leads to the following result (see [6]).

Theorem 29. For all d, q ≥ 2 and D ∈ {K,TV,W} we have, as `→ +∞,

dD

(
h`;q,d√

Var[h`;q,d]
, Z

)
= O

(
`−δ(q;d)(log `)−η(q;d)

)
, (11)

where δ(q; d) ∈ Q, η(q; d) ∈ {−1, 0, 1} and η(q; d) = 0 but for d = 2 and q = 4, 5, 6.

The exponents δ(q; d) and η(q; d) can be given explicitly (see [6]), turning out
in particular that if (d, q) 6= (3, 3), (3, 4), (4, 3), (5, 3) and cq;d > 0,

h`;q,d√
Var[h`;q,d]

L→ Z , as `→ +∞ , (12)

where from now on, →L denotes convergence in distribution and Z ∼ N (0, 1).

Remark 5. For d = 2, the CLT (12) was already proved in [8]; nevertheless Theorem
29 improves the existing bounds on the rate of convergence to the asymptotic
Gaussian distribution.

2.3 Quantitative CLTs for Hermite rank 2 functionals

Proposition 7 states that whenever M is such that J2(M) 6= 0 in (3), i.e. the
functional S`(M) in (1) has Hermite rank two, then

lim
`→+∞

Var[S`(M)]

Var
[
J2(M)

2 h`;2,d

] = 1 . (13)

Hence, loosely speaking, S`(M) and its 2nd chaotic projection J2(M)
2 h`;2,d have

the same high energy behaviour. The main result presented in this survey is the
following, whose proof is given in [6].
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Theorem 30. Let M : R→ R in (1) be s.t. E [M(Z)H2(Z)] =: J2(M) 6= 0, then

dW

(
S`(M)√

Var[S`(M)]
, Z

)
= O

(
`−

1
2

)
, as `→∞ , (14)

where Z ∼ N (0, 1). In particular, as `→ +∞,

S`(M)√
Var[S`(M)]

L→ Z . (15)

3 Geometry of high energy excursion sets

Consider the empirical measure S`(z) of the z-excursion set A`(z) for z ∈ R, as
in §1.1. It is easy to check that in (3) E[S`(z)] = µd(1 − Φ(z)) and for q ≥ 1,
Jq(1(· > z)) = Hq−1(z)φ(z), where Φ and φ denote respectively the cdf and the pdf
of the standard Gaussian law. Since J2(1(· > z) = zφ(z), Theorem 30 immediately
entails that, as `→∞, if z 6= 0

dW

(
S`(z)− µd(1− Φ(z))√

Var[S`(z)]
, Z

)
= O

(
`−

1
2

)
.

The nodal case z = 0 requires different arguments: in the chaos expansion for the
defect (2) D` only odd chaoses occur but each of them “contributes” by Proposition
7. Asymptotics for the defect variance on S2 have been given in [7]:

Var[D`] =
C

`2
(1 + o(1)) , as `→ +∞ ,

for C > 32√
27

. Moreover in [8] a CLT has been proved: as `→ +∞,

D`√
Var[D`]

L→ Z ,

where Z ∼ N (0, 1). In a forthcoming paper, we will provide quantitative CLTs for
the defect on Sd, d ≥ 2.

Remark 6. The volume of excursion sets is just one instance of Lipschtz-Killing
curvatures. In the 2-dimensional case, these are completed by the Euler-Poincaré
characteristic ([3]) and the length of level curves ([4],[12] for the nodal variances).
In forthcoming papers jointly with D. Marinucci, G. Peccati and I. Wigman, we
will investigate the asympotic distribution of the latter on both the sphere S2 and
the 2-torus T2. Our big proposal for the future is to characterize the high energy
behavior of all Lipschitz-Killing curvatures on every “nice” compact manifold.

Acknowledgements: We thank D. Marinucci for valuable suggestions, P. Baldi,
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Abstract: Network estimation methods are popular tools to analyze different
types of omics data. Most network methods require the selection of a tuning
parameter (threshold) that controls the overall sparsity of the network estimate.
Given sample size and signal strength, the goal should be to assemble a repro-
ducible network with few false positives. Controlling the number of false positives
is crucial in order to avoid overinterpretation and erroneous conclusions in the
scientific disciplines where the network models are applied.

We present a bootstrap based method to address the sparsity selection problem.
Our method: (i) selects an appropriate sparsity level controlling the presence of
false positive edges, and (ii) constructs a final network estimate that improves over
naive bootstrap threshold methods. To demonstrate these properties, we employ a
comprehensive simulation study using varying true sparsities, network and sample
sizes. Finally, we illustrate our procedure on a large-scale ovarian tumor sample
data from The Cancer Genome Atlas (TCGA).

Keywords: network, bootstrap, high-dimension, lasso, cancer
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1 Introduction

Network methods are increasingly favoured for analyzing large scale omics data.
Their popularity stems both from their appealing visualization of complex data,
and their potential to highlight mechanistic hypotheses and identify key hub vari-
ables. Such network structures may aid in the discovery of new drug targets essen-
tial for therapeutic development [2].

Several methods are available for network estimation. They all have in common
the need of tuning parameters that control the sparsity of the resulting estimate.
A large (conservative) parameter usually corresponds to a sparse network, which
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means that the network has few edges, while a small (liberal) value for the threshold
will give a more dense network.

Here we propose an innovative use of the marginal statistics collected by boot-
strap and present a method not only to select a sparsity level, but also to improve
a single estimate generating a more robust estimate. Choosing a network size that
matches that of the true network (which most often is unknown) does not guar-
antee a quality estimate, since it may include a large number of false positives.
Instead, we propose a novel method, employing bootstrap and frequency statistics,
that accurately controls the false positive rate.

The paper is structured as follows. In the methods section we describe our
framework. In the results section we present a simulation study that illustrates the
performance of our method and apply it to a genomic dataset on ovarian cancer
extracted from The Cancer Genome Atlas (TCGA). We conclude the paper with
a future work section.

2 Methods

The first step in our framework is to perform bootstrap of network estimates,
producing a set of bootstrap graphs (networks) for a number of sparsity levels.
Consider the data set X, applying network estimation method Mλ (here λ denotes
the penalty parameter which controls the sparsity level) to bootstrap data set Xb,

b = 1, 2, . . . , B, we obtain a set of bootstrap networks {Θ̂1
λ, Θ̂

2
λ, . . . , Θ̂

B
λ }.

The next step is to summarize the bootstrap networks into frequency statistics.

The frequency statistic, hij,λ, for edge (i, j), is given by hij,λ = 1
B

∑B
b=1 I

(∣∣∣θ̂bij,λ∣∣∣),

where I(x) = 1 if x > 0 and 0 otherwise. Thus hij,λ is the number of times the edge
is present across bootstrap estimates, divided by the total number of bootstraps.
Here, θ̂ij,λ is the b-th bootstrap estimate of (i, j). We assemble the frequency
statistics in a matrix Hλ = [hij,λ] and inspect their distributions.

For very sparse networks, edge absence (zero counts) dominates histograms for
Hλ. As the threshold parameter decreases, more and more edges are present across
bootstrap networks and the histograms start to resemble a bimodal U-shape, where
one mode corresponds to edges that are consistently absent across bootstraps and
the other one to edges that are consistently present. For smaller values of the
threshold parameter, we observe the left mode in the histogram (corresponding to
absent edges) shifting to the right, which we consider to be a sign of overfitting.

The presence of these two edge populations; negatives (N, edges not present in
the true network) and positives (P, edges present in the true network), motivates
the use of a mixture to model the frequency statistics. The negative component has
a natural parameter of interest, the false positive rate (FPR); here defined as the
average failure rate (N → FP) across the negative population. Similarly, a success
in the negative component corresponds to a negative edge being correctly classified
as negative (N → TN). Likewise, the natural parameter of interest for the positive
component is the average true positive rate (TPR), i.e. the power, here defined as 1
minus the average failure rate (P → FN) across the positive population. Similarly,
a success in the positive population corresponds to a positive edge being correctly
classified as positive (P → TP).
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Due to the fact that the signal strength of each edge has a complex dependency
on other edges present in the network, the failure rate of a single edge may vary
substantially around the average for the edge population. This makes a simple
binomial model for the number of failures in each population unsuitable. Instead,
we propose the use of a Beta-Binomial mixture model to capture the inflated vari-
ability arising from the edge-specific failure rates in the two populations.

Each negative edge (i, j) thus has an edge-specific failure rate of becoming
a false positive, p0(i, j). Similarly, each positive edge (k, l) has an edge-specific
failure rate, p1(k, l) of becoming a false negative. Considering the network level
population of negatives, we define the average failure rate as µ0, and likewise for
the population of positives, the average failure rate as µ1. The mixture parameter
π0 of the two components in the model then represents the proportion of negatives
and its complement, 1− π0, the proportion of positives.

In the Beta-Binomial framework, p0(i, j) is assumed to come from a (prior)
Beta(α0, β0) distribution, where the FPR can be defined as µ0 = α0

α0+β0
. The

number of failures for edge (i, j), N → FP, is then modelled as an observation
from a Bin(B, p0(i, j)) distribution, where B is the number of bootstrap estimates.
Similarly, p1(k, l) comes from Beta(α1, β1) distribution, where µ1 = α1

α1+β1
= 1-

TPR (average power). The number of failures for edge (k, l), P → FN, is then an
observation from a Bin(B, p1(k, l)) distribution.

In detail, the number of times edge (i, j) is present across bootstrap estimates

θ̂bij,λ, given by xij,λ =
∑B
b=1 I

(∣∣∣θ̂bij,λ∣∣∣), is an observation of the random variable

Xij,λ with distribution

fXij,λ(k) = π0

(
B

k

)
Be(k + α0, k + β0)

Be(α0, β0)
+ (1 − π0)

(
B − k

k

)
Be(B − k + α1, B − k + β1)

Be(α1, β1)
,

where Be is the Beta function, defined as Be(x, y) =
∫ 1

0
tx−1(1− t)y−1dt.

The prior parameter µ0 is the average false positive rate of the negative popu-
lation. If the sparsity parameter is very stringent, the estimated µ0 approaches 0,
and if the sparsity constraint is relaxed, the µ0 estimate can be quite large, thus
reflecting the inclusion of a large number of false positives.

As the Beta-Binomial model offers a way to estimate the average false positive
rate, we propose to select a sparsity level such that this estimate, µ̂0 = µ̂0(λ), is
below some predetermined value t (t = 0.05, for example). The optimal estimated
network size, N∗, becomes thus the one corresponding to λ∗ = max {λ : µ̂0(λ) < t}.

Once N∗ has been selected, network estimates can be post-processed to con-
struct more robust estimates. The Beta-Binomial model produces a natural esti-
mate for a network at any given sparsity level λ, as described below.

Let ∆ij be the unobserved true class (positive or negative) of edge (i, j). The
expected value of ∆ij , given the parameters of the model and the edge presence
counts, γij(α0, β0, α1, β1, π0) = E(∆ij |α0, β0, α1, β1, π0;Xij,λ), is estimated by the
EM-Algorithm by

γ̂ij =
π̂0BetaBin(xij,λ; α̂0, β̂0)

π̂0BetaBin(xij,λ; α̂0, β̂0) + (1− π̂0)BetaBin(xij,λ; α̂1, β̂1)
.
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That is, the γ̂ij is an estimate of the class expected value of edge (i, j). The final
network is thus constructed by removing edges where γ̂ij < 0.5.

3 Results

Simulation study

We compare our proposed method on simulated data with BIC, CV and Harti-
gans’ DIP statistic [1]. The DIP statistic compares each histogram with a uniform
distribution, with a large test statistic indicating a substantial deviation from uni-
modality. The simulated data is generated from a network comprising 100 genes,
constructed from expression data for glioblastoma from TCGA. We consider a
sparse scenario where the true network contains about 13% non-zeros, and a dense
one, where the true network contains about 21% non-zeros.

In the sparse setting both the Beta-Binomial model and the DIP select network
sizes closely matching the true sparsity, which also corresponds to the size where the
F1 measure is maximized (results not shown). At the same time, the Beta-Binomial
model controls the FPR at the chosen level, while DIP is a bit less stringent (FPR
< 0.1), as illustrated in Figure 1, top row. Both BIC and CV overestimate the
network size, which means that both more true positives and false positives are
included in the network estimate. However, the fact that the F1 is lower indicates
a higher inclusion rate of false positives than true positives.

Estimating a dense network is a more difficult task compared to the sparse
setting. This is reflected in the fact that the maximum of the F1 measure is less
distinct (results not shown). Also, it is not possible to simultaneously control the
FPR while maximizing the F1 measure (which was the case in the sparse setting).
This is clearly shown for BIC and CV, which have higher TPR and F1, but at
the price of including a higher number of false positives, see Figure 1 (bottom
row). The Beta-Binomial and DIP methods control the FPR around 0.05 and 0.1,
respectively.

Application to cancer genomic data

We apply our methodology to expression data from ovarian cancer tumors from The
Cancer Genome Atlas (TCGA). The data set comprises 266 samples and ∼20500
genes. After pre-processing to take into account variability and the estimated
network’s connected components, the data set is reduced to ∼2000 genes. A total
of 1000 bootstrap networks are estimated for a sequence of 10 values of the glasso
threshold parameter. As we aim to model reasonably strong signals, with our
screening process we have filtered out undesired noise prior to modeling. We need
thus to focus only on threshold parameters between 0.7 (otherwise a larger set
of genes should have been included) and 0.9 (since larger ones produce empty
networks).

The results for network size selection are shown in Figure 2, top row. We
include the Beta-Binomial models that control the FPR at 0.01 and 0.05. The
former selects a very sparse network of about 4000 edges while the former opts
for one of size 11,000. DIP selects a network with 16,000 edges, however, this still
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Figure 1: Network size selection performance for simulated data.

corresponds to a very sparse network with about only 3.5% of all the potential
edges present. BIC and CV perform poorly; BIC (rescaled to be comparable with
CV) is almost constant but with a minimum at the smallest network. CV, on the
other hand, shows a steady decrease and chooses the largest network.

For further validation we compute the overlap of our final network assemblies
with pathways from the PathwayCommons database. The overlap is computed as
a fold enrichment of hits from the HPRD, Intact, NCI Nature and Reactome data
bases. Figure 2, bottom-left, shows the results for Beta-Binomial classification and
two alternative methods to assemble final estimaes (permuted and degree-preserved
permuted networks, which offer a more principled way to select a bootstrap thresh-
old as in [3], details omitted). The values for the x-axis correspond to the average
network sizes across bootstraps for the selected values of λ. The vertical lines in-
dicate the network sizes selected by each method. Degree-preserved network and
Beta-Binomial classification have the best fold enrichment levels, suggesting that
the constructed networks contain relevant connections which overlap with known
biological pathways. Post-processing has an effect in the final network size though.
In Figure 2, bottom-right, we show the fold enrichment levels plotted against the
post-processed network sizes. Beta-Binomial classification and degree-preserved
networks reduce the network sizes in order to correct for the inclusion of false
positives. This effect is seen as a shift in the corresponding curves.
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Figure 2: Network size selection performance for real data.

4 Future work

Our method can be used to select the tuning parameter for any network property
that can be collected as a frequency statistic. Joint modeling of networks for groups
of samples belonging to different cancer types, can require fusing of edges (the edge
values are estimated to be equal across classes). This problem can be solved by
an extension of the graphical lasso, the so called fused graphical lasso ([4]), which
requires tuning of a fusing parameter as well as a sparsity parameter. Fusing here,
is an example of another network property for which frequency statistics can be
collected. We plan to expand the applicability of our framework to include the
selection of fusing parameters in the same principled way as selection of sparsity
parameters.

Another line of work is to couple our framework to modularized networks, where
we choose the sparsity level individually for the modular components. With this
approach we control the false positive rate in each modular component separately,
but while boosting the true positive rate in some modules with a higher signal-to-
noise ratio. In this way, we also control the false positive rate globally, but allowing
for some modules to be denser (have more true positives) than what would be
allowed with a global sparsity criterion.

Future work also includes a substantial decrease of computational burden by
performing a linesearch for a suitable sparsity threshold. The idea is to let the Beta-
Binomial estimated parameters to guide the search aiming for a particular FPR
control, e.g. 0.01 and stop once it has been achieved. This approach improves
execution time by reducing the number of threshold parameters for which the
network has to be estimated and by avoiding estimation of very dense networks.

Acknowledgements: The work presented here was supported by grants from the
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Abstract: As a starting point we prove a functional central limit theorem for es-
timators of the invariant measure of a geometrically ergodic Harris-recurrent Mar-
kov chain in a multi-scale space. Its proof is inspired by [2]. It allows to construct
confidence bands for the invariant density with optimal (up to undersmoothing)
L∞-diameter by using wavelet projection estimators.

In addition our setting applies to the drift estimation for a diffusion

dXt = b(Xt)dt+ dWt, t ≥ 0,

observed discretely with fixed observation distance. We prove a functional central
limit theorem for estimators of the drift function. Finally, adaptive confidence
bands for the drift are constructed by using a data-driven estimator and based on
the ideas by [3]. Due to the Markovian structure of the observations, the proofs
rely on a non-standard concentration inequality by [1].
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Abstract: This paper is devoted to the simultaneous estimation of the means of p ≥ 2
independent Poisson distributions. A novel loss function that penalizes bad estimates of
each of the means and the sum of the means is introduced. Under this loss function, a
class of minimax estimators that uniformly dominate the maximum likelihood estimator
(MLE) is derived. Estimators in this class are shown to also be minimax and uniformly
dominating under the commonly used weighted squared error loss function. Estimators
in this class can be fine-tuned to limit shrinkage away from the MLE, thereby avoiding
implausible estimates of means anticipated to be bigger than the others. Further light is
shed on this new class of estimators by showing that it can be derived by Bayesian and
empirical Bayesian methods. Moreover, a class of prior distributions for which the Bayes
estimators uniformly dominate the MLE under the new loss function is derived.
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AMS subject classifications: 60G09, 62G09

1 Introduction

Let Y = (Y1, . . . , Yp) be independent Poisson random variables with means θ =
(θ1, . . . , θp), and let γ =

∑p
i=1 θi. [1] showed that the MLE, δo(Y ) = Y (which is

also the uniformly minimum variance unbiased estimator), is inadmissible under
the weighted squared error loss function L1(δ, θ) =

∑p
i=1 θ

−1
i (δi − θi)2, provided

that p ≥ 2. [1] derived the estimator

δCZ(Y ) =

(
1− p− 1

p− 1 + Z

)
Y, (1)

where Z =
∑p
i=1 Yi, and showed that this estimator possesses uniformly smaller

risk than the MLE under L1.
The estimator in (1), which “shrinks” the MLE towards the zero boundary of

the parameter space, guarantees a reduction in the total risk R(δ, θ) = EθL1(δ, θ)
relative to the MLE. With regard to other objectives, however, it may perform
poorly. First, it may yield implausible estimates of those θi with unusually high
values. Second, it is likely to perform poorly in estimating the sum of the individ-
ual Poisson means, γ. Recall that Z, the sum of p independent Poisson random
variables, is itself Poisson with mean γ. In many situations where one is inter-
ested in estimating an ensemble of Poisson means, one may also be interested in

∗Corresponding author: emilas@math.uio.no
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a good estimate of the sum of the means, or equivalently the mean of the means,
θ̄ = p−1γ. Think, for example, of a decision maker having to make budgetary
decisions concerning each of the boroughs of a city and the city as a whole.

The purpose of this paper is to develop a class of estimators that compromise
between the Clevenson-Zidek estimator in (1) and the MLE. That is, a class of
estimators that has good ensemble properties with respect to the weighted squared
error loss function, and has good individual properties when it comes to estimating
the individual θi and γ. The problem of shrinking the MLE towards non-zero
points in the parameter space has been treated elsewhere, see e.g. [2].

2 The c -Loss function

Consider the following extension of the weighted squared error loss function,

Lc(δ, θ) =

p∑
i=1

1

θi
(δi − θi)2

+
c

γ

(
p∑
i=1

δi − γ
)2

. (2)

This loss function is equal to the weighted squared error loss function L1 plus an
extra term that penalizes for bad estimates of γ, where the weight accorded to this
extra term is a function of the user-defined constant c. The risk of the MLE under
Lc is constant R(Y, θ) = p+ c.

We will now develop a class of estimators with uniformly smaller risk than
p + c. Consider estimators δ∗ = (δ∗1 , . . . , δ

∗
p) of the form δ∗ = (1 − φ(Z))Y , where

Z =
∑p
i=1 Yi, Eθ|φ(Z)| <∞ and φ(z + 1)(z + 1) ≥ φ(z)z. Using that Eg(Y )/θ =

Eg(Y+1)/(Y+1) (for all integrable functions such that g(y) = 0, ∀ z ≤ 0), and that
conditional on Z the vector Y is multinomial with cell probabilities θi/γ, 1 ≤ i ≤ p,
we obtain an expression for the difference in risk EθD = R(δ∗, θ)−R(Y, θ),

Eθ[Lc(δ
∗, θ)− Lc(Y, θ)] = EθE[Lc(δ

∗, θ)− Lc(Y, θ)|Z]

= Eθ

{
(φ2(Z)− 2φ(Z))

Z[(p− 1) + (1 + c)Z]

γ
+ 2(1 + c)φ(Z)Z

}
= Eθ

{
(φ2(Z + 1)− 2φ(Z + 1))[(p− 1) + (1 + c)(Z + 1)]

+ 2(1 + c)φ(Z)Z}
= EθDc(Z).

Here Dc is independent of the parameters, so a function φ(z) that ensures that
Dc(z) ≤ 0 for all z with strict inequality for at least one datum z yields an estimator
that uniformly dominates the MLE. A class of such functions is φ(z) = ψ(z)/(p−
1 + (1 + c)z) where the function ψ is such that 0 < ψ(z) < 2(p − 1) and is non-
decreasing for all z ≥ 0. This gives a class of estimators, denoted Dc, that uniformly
dominate the MLE under (2), namely

δc(Y ) =

(
1− ψ(Z)

p− 1 + (1 + c)Z

)
Y. (3)

Theorem 31. For all θ ∈ Θ, estimators δc ∈ Dc have smaller risk than the MLE
δo(Y ) = Y when loss is given by Lc in (2).
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Proof. Use the expression for Dc above, then

R(δc, θ) = p+ c+ EγDc

= p+ c− 1

γ
Eγ {φ(Z)Z[2(p− 1 + (1 + c)(Z − γ))

− φ(Z)[p− 1 + (1 + c)Z]]}

= p+ c− 1

γ
Eγ {φ(Z)Z[2(p− 1 + (1 + c)(Z − γ))− ψ(Z)]}

≤ p+ c− 2

γ
Eγ {φ(Z)Z(1 + c)(Z − γ)}

= p+ c− 2(1 + c)Eγ

[
φ(Z)Z2

γ
− φ(Z)Z

]
= p+ c− 2(1 + c)Eγ [φ(Z + 1)(Z + 1)− φ(Z)Z]

≤ p+ c = R(Y, θ),

for all θ because φ(z)z is a strictly increasing function of z.

The optimal choice of ψ in terms of minimizing risk is p − 1. The estimator
in Dc with ψ(z) = p − 1 is denoted δc1. As seen from the proof above, the risk of
estimators in Dc depends on θi only through the sum γ, and is therefore easy to
compute numerically. The savings in risk relative to the MLE are substantial for
small values of γ, and decrease as γ grows.

The difference in risk between estimators in Dc and the MLE under L1 is
EγD(Z) = Eγ

{
(φ2(Z)− 2φ(Z))Z[(p− 1) + Z]γ−1 + 2φ(Z)Z

}
. Inserting this ex-

pression in the proof of Theorem 31 it is straightforward to show that estimators
in Dc uniformly dominate the MLE under L1.

3 Bayes, minimax and admissibility

Let θ1, . . . , θp be independent and identically distributed (iid) Gamma random
variables with mean a/b and variance a/b2 (denoted G(a, b)). The Bayes solution
under the c -Loss function is then

δBj (y) =
1 + c

1 + cg(z)

a+ yj − 1

b+ 1
, (4)

where g(z) = (p(a− 1) + z)/(pa− 1 + z). With the prior sequence {G(1, b/n)}∞n=1

the minimum Bayes risk converges to p + c, i.e. the maximum risk of the MLE.
This implies that the MLE is minimax under (2), hence (3) must also be minimax
(see e.g. [5]).

In the following we sketch how estimators in the class Dc can be derived by
Bayesian methods in three different ways. First, the results of [3] in a L1-setting
are extended to the c -Loss function. Let θi, 1 ≤ i ≤ p be iid G(1, b) and let
b ∼ π2(b) ∝ bα−1 (b + 1)−(α+β). It can then be shown that the expectation of
θi given b and the data are as in (4) with b + 1 replaced by E[b + 1 |Z]. This
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expectation is given by

E[b+ 1 |Z] =
p+ α+ β + z − 1

z + β − 1
.

Theorem 32. Assume that p > 2+c and consider the family of prior distributions
π2(b) ∝ bα−1 (b+ 1)−(α+β) where

0 < α ≤ p− 2− c
1 + c

and β > 0. Then the Bayes solution under the c -Loss function is a member of Dc.

Proof. Inserting the expression for E[b + 1 |Z] in the Bayes solution in (4) with
a = 1 we obtain

δj(Y ) =
(1 + c)(p− 1 + Z)

p− 1 + (1 + c)Z

z + β − 1

p+ α+ β + z − 1
Yi. (5)

Recall that the estimators in Dc are of the form (1 − ψ(Z)/(p − 1 + (1 + c)Z))Yi
where ψ is non-decreasing and 0 ≤ ψ(z) ≤ 2(p− 1) for all z. By some algebra we
obtain that for the Bayes solution we here consider

ψ(z) = p− 1 + (1 + c)z − (1 + c)(p− 1 + z)
z + β − 1

p+ α+ β + z − 1

= (1 + c)
(p− 1 + z)(p+ α)

p− 1 + α+ β + z
− c(p− 1).

This function is non-decreasing for all z ≥ 0. Moreover, we see that it is bounded
above by

sup
z≥0

ψ(z) = (1 + c)(p+ α) ≤ 2(p− 1),

since α ≤ (p− 2− c)/(1 + c). This means that the class of Bayes solutions in (5),
where α satisfies the condition of the theorem, is in Dc.

Second, in an empirical Bayes setup the Poisson parameters are assumed iid
G(1, b) and the parameter b is estimated from the data. An unbiased estimator of
b is z/(p− 1 + z). Inserting this estimator in (4) (and setting a = 1) we obtain the
estimator δc1 given by

δc1(Y ) =

(
1− p− 1

p− 1 + (1 + c)Z

)
Y. (6)

This estimator is in Dc and, as mentioned, it is the optimal estimator in Dc in
terms of minimizing risk.

Finally, we show that the estimator δc1 in (6) can be derived as a generalized
Bayes estimator. Reparametrize the Poisson means as θi = αiλ, 1 ≤ i ≤ p, and
let (α1, . . . , αp) be Dirichlet distributed with parameters (a1, . . . , ap). Define a0 =∑p
i=1 ai. Let λ have the improper prior that is flat on the positive real line,

λ ∼ π(λ) ∝ I(λ > 0).
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Using that Y |Z is multinomial the Poisson likelihood can be factorized as the
product of a multinomial and the marginal of Z, this gives that the posterior
distribution θ1, . . . , θp is

π(θ1, . . . , θp |Y ) ∝ P (Y = y |Z)P (Z = z) Dirichlet(a1 . . . , ap)π(λ)

=
z!

y1! · · · yp!
αa1+y1−1

1 · · · αap+yp−1
p λze−λ π(λ)

∝ Dirichlet(a1 + y1, . . . , ap + yp)G(z + 1, 1)π(λ),

(7)

which also shows that (α1, . . . , αp) and λ are independent. With this parametriza-
tion the Bayes solution under the c -Loss function is

δBj (Y ) =
1 + c

1 + cE[λ−1 |Y ]
∑p
i=1{E[θ−1

i |Y ]}−1
{E[θ−1

j |Y ]}−1. (8)

With respect to the posterior distribution in (7), the expectation E[θ−1
j |Y ] in

this expression is given by

E[θ−1
j |Y ] =

∫ ∞
0

∫
S

1

αjλ
π(θ1, . . . , θp |Y ) dα dλ

=

∫ ∞
0

∫
S

1

αjλ

{
Γ(a0 + z)∏p
i=1 Γ(ai + yi)

p∏
i=1

αai+yi−1
i

}
G(z + 1, 1)π(λ) dα dλ

=

∫ 1

0

G(z + 1, 1)π(λ) dλ

∫
S

αj
Γ(a0 + z)∏p
i=1 Γ(ai + yi)

p∏
i=1

αai+yi−1
i dα.

Here the expectation of αj over the simplex S is E[αj |Y ] = (a0+z−1)/(aj+yj−1).
Inserting this in the posterior expectation of θ−1

j gives

E[θ−1
j |Y ] =

a0 + z − 1

aj + yj − 1

∫ ∞
0

1

λ
G(z + 1, 1)π(λ) dλ,

for j = 1, . . . , p. Morover, we have that

E[λ−1 |Z] =

∫ ∞
0

1

λ
G(z + 1, 1)I(λ > 0) dλ =

1

z
,

which gives

E[θ−1
j |Y ] =

a0 + z − 1

aj + yj − 1

1

z
.

In addition, the sum in (8) equals

p∑
i=1

{E[θ−1
i |Y ]}−1 = z

p∑
i=1

aj + yj − 1

a0 + z − 1
=

(a0 + z − p)z
a0 + z − 1

.

Now, let α1, . . . , αp be uniformly distributed over the simplex S. This is achieved
by setting a1 = · · · = ap = 1. Then the sum a0 = p. In summary, with λ uniform
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over R+ and the (α1, . . . , αp) uniform on the simplex S = [0, 1]p, the Bayes solution
under the c -Loss function equals

δBj (Y ) =
1 + c

1 + c 1
Z

Z2

p−1+Z

Yj
p− 1 + Z

=

(
1− p− 1

p− 1 + (1 + c)Z

)
Yj = δc1(Y ).

This means that in addition to being an empirical Bayes estimator, the new esti-
mator δc1 is also a generalized Bayes estimator.

We have yet to find out whether the estimator δc1 in (6) is admissible. If we in
the prior distribution π2(b) ∝ bα−1 (b + 1)−(α+β) considered above set α = m − 1
and β = 1, the estimator in (5) is admissible (since it is proper Bayes) for all
m > 1. For m = 0 the estimator is equal to δc1, but it is then no longer proper
Bayes. Thus, in a sense, we are “one unit” away from proving that the optimal
estimator in terms of minimizing risk (under Lc) is admissible. See [6] for more
details.

4 Conclusion

In this paper we have derived a class of minimax estimators that uniformly dom-
inate the MLE under the c -Loss function in (2). Estimators in this class are also
minimax and uniformly dominant relative to the MLE under the weighted squared
error loss function L1. Importantly, estimators in this class can be fine-tuned in
order to achieve the desired amount of balancing between two conflicting desider-
ata: good total risk and good individual risk in estimating individual θi and the
sum γ.
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Abstract: We consider selection rule for small-n-large-P logistic regression which
consists in choosing a subset of predictors minimizing Generalized Information Cri-
terion over all subsets of variables of size not exceeding k. Consistency of such rule
under weak conditions were established in [3]. This is a generalization of the
results of [2] to much broader regression scenario which allows also for a more
general criterion function than considered there and k depending on a sample size.
We will discuss possibility of further weakening of the assumptions.
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Abstract: The one-way MANOVA problem of testing whether the mean vectors
of several populations differ is common in many fields of research. In medicine,
the rapid advance of high-throughput technologies has led to an increased interest
in multivariate sets of biomarkers in e.g. blood samples. Such biomarkers can
be used to understand different diseases and how they are affected by treatments
and covariates. Biomarker data is often left-censored because some measurements
fall below the laboratory’s detection limit. I will discuss how censoring affects
multivariate two-sample and one-way MANOVA tests, in terms of size and power.
Classical parametric tests are found to perform better than nonparametric alter-
natives, which means that the current recommendations for analysis of censored
multivariate data have to be revised. The good performance of the classical para-
metric tests can at least partially be explained by some asymptotic results related
to multivariate skewness and kurtosis. An expansion of the size of the classical
tests shows that up to o(n−1) the size is determined by skewness and kurtosis, and
closer inspection of the censoring process reveals that moderate censoring only has
a mild effect on these quantities. If the underlying distribution is approximately
normal then moderate censoring will therefore not affect the size of the tests much.
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Abstract: In this paper we empirically examine the predictive power of the risk
neutral option-implied distribution on sudden (extreme) price spikes in agricul-
tural commodity markets. We use as predictors of extreme returns the skewness of
the risk neutral distribution, the variance risk premium and the tail risk measure.
We find that our option-implied risk measures are robust and statistically signifi-
cant predictors of the extreme events in the agricultural commodity markets. Our
option-implied risk measures forecast both the magnitude and the probability of
occurrence of a crash in these markets

Keywords: risk neutral moments, tail risk measures, extreme value theory, agri-
cultural commodities

1 Introduction

In this paper we empirically estimate the forecasting power of the option-implied
risk measures when used as predictors of extreme events in maize, wheat and soy-
beans markets. With the term extreme event, we define what in the relevant
literature is called upward price spikes. While in the equity market the extremely
unlikely event is a sudden market crash, in agricultural markets the unlikely ex-
treme event is defined as a sudden upward price spike, since sudden increases in
commodity prices are most significant not only for commodity investors (at micro
level), but also for food security and policy issues in a macroeconomic level. In
simpler words, while the equity investors are fearful of the left tail of the distri-
bution of returns, the commodity investors are fearful of the shape of right tail.
Our option-implied measures are constructed using some results of Extreme Value
Theory (EVT) and of risk neutral valuation. Our primary motivations come from
the literature in equity markets, in which the option-implied tail loss measures
add significant forecasting power when used as predictors of stock-market crashes
(Bollerslev et.al [3], Hamidieh [6], Vilkov et.al [8]). To the best of our knowledge,
this is the first paper which deals with the forecasting of extreme events in agricul-
tural commodity markets using option-implied information. While the empirical
works in the relevant literature (e.g. Morgan et.al [7]) use the moments and the tails
of the physical distributions (the distribution of the realized returns in agricultural
commodity markets) in order to forecast extreme upward spikes in these markets,
we use the moments and the (right) tails of the risk neutral option-implied distribu-
tion instead. Our contribution in the field is twofold: firstly, our empirical findings
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show that the option-implied information in agricultural markets is extremely use-
ful, not only when forecasting the variance of agricultural prices (see Triantafyllou
et.al [9], Wang, Fausti and Quasmi (2012)), but also when we forecast the sudden
upward price movements. Our empirical findings implicitly reveal that the option-
implied risk neutral distribution can (and must) be a risk management tool for
agricultural commodity investors, since the risk management techniques are most
needed and appreciated not in normal times, but in times of turbulence. By our
forecasting regressions, we find that our option-implied risk measures (namely risk
neutral skewness, variance risk premia and Tail Risk Measures) add statistically
significant forecasting power when used as predictor of agricultural commodity re-
turns. In addition, our option-implied risk measures contain all the forecasting
information of the physical (realized) tail risk measure existed in the relevant liter-
ature (Morgan et.al[7]). Secondly, when we define the extreme event in agricultural
markets as a 2 standard deviation rise (above the expected one) in monthly returns,
our forecasting binary (probit) regressions show that our option-implied tail-risk
measure captures and forecasts in a statistically significant manner these extreme
price spikes and the probability of the occurrence of these.

2 Methodology

2.1 Tail risk measure

In order to compute the tail risk measure we apply some results-tools of Extreme
Value Theory (EVT) on the risk neutral option-implied distribution. We apply
the second theorem of EVT, known as the Pickands-Balkema-de Haan theorem,
to describe the distribution of a commodity price X above an extreme (unusually
high) threshold value h by a Generalized Pareto distribution of the form:

Gβ,ξ(h− x) =

{
l − (l + ξ h−xb )−

l
ξ ξ 6= 0

l − exp(−h−xb ) ξ = 0.
(1)

The tail risk measure TLRh,t at time t given a specific pre-determined threshold
h is the expected excess tail value given in equation (2) relative to the current value
xt, and it is the following formula:

E(h− x/h > x) =
b

l − x (2)

The tail risk measure TLRh,t at time t given a specific pre-determined threshold h
is the expected excess tail value given in equation (2) relative to the current value
xt, and it is the following formula:

TLRh,t =
Et(h− x/h > x)

xt
(3)

Under the risk neutral probability measure Q, we assume that the corresponding
risk neutral option-implied distribution belongs to the maximum domain of attrac-
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tion of an extreme-value distribution Hξ. Then, the tail loss measure for a given
threshold is unique1.

2.2 Model free option-implied moments

We compute the model-free version of option implied moments using the method
of Bakshi et.al. [1].Under the risk-neutral probability measure Q, the analytical
formulas for conditional risk neutral moments are given below:

V AR = Eqt (R2)− [Eqt (R)]2 (4)

SKEW =
Eqt (R3)− 3Eqt (R)Eqt (R2) + [Eqt (R)]3

V AR3/2
(5)

In accordance with Bakshi et.al. [1], we define the Quad and Cubic contracts2 as
follows:

Quad = exp(−r(T − t))Eqt (R2) (6)

Qubic = exp(−r(T − t))Eqt (R3) (7)

In the equations (6) and (7), r is the risk-free interest rate (3-month US-Treasury
Bill), t is the trading date and T is the expiration date of a given contract and conse-
quently T−t defines time to maturity. If we substitute Quad and Cubic expressions
given in equations (6) and (7) into equations (4) and (5), we get the model free
version of option implied variance (MFIV ) and implied skewness (MFIS) given
below :

MFIV = exp(−r(T − t))Quad− [Eqt (R)]2 (8)

MFIS =
exp(−r(T − t))Cubic− 3Eqt (R) exp(−r(T − t))Quad+ 2[Eqt (R)]3

MFIV 3/2
(9)

Furthermore, Bakshi et.al [1] show that under the risk-neutral pricing measure
Q, the Quad and Cubic contracts can be expressed as continuous functions of
out-of-the-money European calls C(t, T,K) and out-of-the-money European puts
P (t, T,K) in the form given below:

Quad =

∫ ∞
F

2(1− ln[KF ])

K2
C(t, T,K)dK +

∫ F

0

2(1 + ln[ FK ])

K2
P (t, T,K)dK (10)

Qubic =

∫ ∞
F

6 ln[KF ]− 3 ln[KF ]2

K2
C(t, T,K)dK−

∫ F

0

6 ln[ FK ] + 3 ln[ FK ]2

K2
P (t, T,K)dK

(11)
K is the strike price of the option contract, F is the price of the underlying futures
contract, t is the trading date and T is the expiration date of the option contract.

1See Vilkov et.al [8] for analytical proof of this proposition
2If we define with R the logarithmic returns of the underlying asset with price St [R =

ln((St + 1
ln(St)

)], then a Quad (or volatility) contract is a theoretical contract with risk neutral

quadratic expected return-payoff EQ
t (R2) and a Cubic contract is a contract with risk neutral

cubic expected return-payoff EQ
t (R3). Bakshi et.al. [1] prove that quadratic and cubic expected

risk neutral returns are continuous functions of Out of the Money (OTM) call and put option
prices.
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In addition, Bakshi et.al. [1] prove that the expected (conditional on information at
time t) risk-neutral returns Eqt (R) can be approximated by the following expression:

Eqt (R) = exp(r(T − t))− 1− exp(r(T − t))
2

Quad− exp(r(T − t))
6

Qubic (12)

Knowing the analytical forms of Quad and Cubic contracts from equations (6) and
eqrefQubic, and the approximating quantity of conditional risk neutral expected
returns Eqt (R) from equation (12), we can compute by using numerical integration
the model free option-implied moments given in equations (8) and (9).

2.3 Variance risk premium

The variance risk premium represents the compensation demanded by investors for
bearing variance risk and it is defined as the difference between realized variance
and a risk-neutral model-free implied variance (MFIVt). According to Bliss et.al
[2] and Carr et.al [4] is a reliable measure of risk aversion in financial markets.
More specifically, following Carr et.al [4] and Christoffersen et.al [5], we define the
variance risk premium as the difference between the P−measure expected variance
and the Qmeasure expected variance, using the following formula:

V RP (t, T ) = EPt (RV (t, T ))− EQt (RV (t, T )) (13)
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Overview of Some Interesting Statistical Problems
in Biochemical Analysis of Glycans
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Abstract: Glycomics is rapidly emerging field in high-throughput biology that
aims to systematically study glycan structures of a given protein, cell type or
organic system. As within other high-throughput methods in biology (microarrays,
metabolomics, proteomics), accuracy of high-throughput methods is highly affected
by complicated experimental procedures leading to differences between replicates
and the existence of batch effects, among others. Study of appropriate methods
for normalization, appropriate designs of experiments and batch removal methods
tailored to the needs of glycomics is therefore a necessity.
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1 Introduction

Glycans are important structural and functional components of the majority of
proteins. However, their structural complexity and the absence of a direct genetic
template impedes understanding of the role of glycans in biological processes. A
recent comprehensive report endorsed by the US National Academies concluded
that glycans are directly involved in the pathophysiology of every major disease
and that additional knowledge from glycoscience will be needed to realize the goals
of personalized medicine [11].

This conclusion gave importance to the already existing field of biochemical
analysis of glycans. Currently, numerous studies in the development of biochemical
analysis of glycans are conducted. Successful implementation of high-throughput
analytical techniques for glycan analysis resulted in publication of GWAS of the
human glycome [9, 7, 8, 6]. A number of studies have investigated the role of
glycans in human disease, including autoimmune diseases and cancer [2, 10].

Biochemical analysis of glycans is usually conducted with one of the following
methods: UPLC-FLR, ultraperformance liquid chromatography with fluorescence
detection; CGE-LIF, multiplex capillary gel electrophoresis with laser induced flu-
orescence detection; MALDI-TOF-MS, matrix assisted laser desorption/ionization
time of flight MS; LC-ESI-MS, liquid chromatography electrospray MS.

Complexity of these methods, together with the complexity of glycans usually
leads to different effects like batch effects or multiplicative errors making subsequent
analysis of results more cumbersome. Therefore, the need for greater expertise in
statistical and computer science methods becomes obvious.

∗Corresponding author: ivo@iugrina.com



Proceedings of the 19th EYSM in Prague 2015 147

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●

●

●

● ● ● ●

●

●

●

●
● ●

●
● ●

●

●

●

●

●
● ● ● ●

● ● ●
●

●
●

● ● ● ● ● ●

G
P

1

G
P

2

G
P

3
G

P
4

G
P

5
G

P
6

G
P

7
G

P
8

G
P

9

G
P

10

G
P

11

G
P

12

G
P

13

G
P

14

G
P

15

G
P

16

G
P

17

G
P

18

G
P

19

G
P

20

G
P

21
G

P
22

G
P

23
G

P
24

G
P

25

G
P

26

G
P

27
G

P
28

G
P

29

G
P

30

G
P

31
G

P
32

G
P

33
G

P
34

G
P

35

G
P

36

G
P

37

G
P

38

G
P

39

0

50

100

5 10 15 20
Time (min)

In
te

ns
ity

 (
E

U
)

Figure 1: An example of a chromatogram from the UPLC analysis of glycan com-
position from the blood plasma sample.

2 Problems

Especially problematic is the multiplicative error as a consequence of laboratory
conditions and the current practice of removing that error. An example of a result
from the biochemical analysis of glycans with UPLC method from blood plasma is
given in Figure 1. This is an example of a chromatogram. If one denotes the areas
under the chromatogram between appropriate borders with GP∗ the graph can be
represented as a random vector GP = (GP1, . . . , GP39). Multiplicative error then
means that for every run of the biochemical analysis the results will be of the form
GP = C · GP where C denotes a random variable. Therefore, every run will give
different intensities.

Current methodology within the filed of glycomics approaches the problem of
the multiplicative error by the usage of Total Area Normalization. Normalization
refers to the creation of shifted and scaled versions of statistics, where the intention
is that these normalized values allow the comparison of corresponding normalized
values for different datasets. Total Area Normalization (TAN), also called percent-
age normalization, is given by the transformation

GPTANi =
GPi∑
j GPj

.

Although this normalization procedure works fine for the basic quality control
it introduces many problems like spurious correlations (making network/pathway
analysis problematic) or other problems with the constrained data (see [12, 1] for
more details).

Another big problem in the analysis of glycans is the existence of batch effects
similarly to the fields of metabolomics or microarray experiments. Conducting a
glycan analysis on a big population means that the analysis will almost always be
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Figure 2: An example of batch effects (differences in medians and spread) within
the UPLC analysis of blood plasma samples presented with boxplots.

conducted in batches of 100 to 1000 samples. As the time between the analysis of
batches increases the probability of the introduction of some random effect increases
also. This could be due to the changes on the machine where the analysis is
conducted or by the change of a lab analyst.

Unfortunately, the current practice in glycomics research often ignores the prob-
lem of batch effects and therefore increases the probability of false results in latter
statistical analysis.

An example of batch effects on an experiment designed to infer the experimental
variability is given in Figure 2. Since all batches consist of the same (replicated)
samples the results should behave the same. However, the batches were prepared by
different lab analysts at different time points introducing batch effects non-intrinsic
to the underlying samples.

Appropriate design of experiments is also sometimes ignored by the current
practice in the field of biochemical analysis of glycans. This is closely connected
with the aforementioned existence of batch effects since the prerequisite for batch
correction procedures is an effective design of the experiment.

3 Improvements

The current practice can be improved by the introduction of appropriate methods
for the design of experiments like randomized block designs [3], exploration of the
effects of other normalization procedures like quantile normalization or median
normalization [4] and the introduction of batch correction techniques like linear
mixed effect models and empirical Bayes methods [5].
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Abstract: We study the sparse normal means problem, where the mean vector
is sparse in the nearly black sense. Adopting the frequentist framework where the
data is generated according to some fixed mean vector, we use the posterior mean
resulting from the horseshoe prior to recover the mean vector. We show that the
posterior rate of convergence is at most of the order of the minimax rate. The
horseshoe prior is not unique in this regard, as some recent extensions of the work
on the horseshoe prior show.
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1 Introduction

A common test case for sparsity methods is the sparse normal means problem,
where we observe a vector Y n ∈ Rn, Y n = (Y1, . . . , Yn), such that

Yi = θi + εi, i = 1, . . . , n,

for independent standard normal random variables εi. The vector θ = (θ1, . . . , θn)
is the vector of interest, and is assumed to be sparse in the nearly black sense,
meaning that the number of nonzero entries of θ,

pn := #{i : θi 6= 0}

is o(n) as n→∞. Our goal is to recover θ, and to provide uncertainty quantifica-
tion.

We focus in this paper on Bayesian methods. Thus, we use the posterior distri-
bution to achieve both of our goals. The typical choice for our goal of recovery is
to use a measure of centre, such as a median, mean, or mode as an estimator. For
uncertainty quantification, a credible set is a natural object to use from a Bayesian
point of view. To achieve realistic uncertainty quantification, the posterior should
contract to its center at the same rate at which the estimator approaches the true
parameter.

A well-studied approach has been to induce sparsity through a spike and slab
prior [6], which is a mixture of a Dirac measure at zero (to account for the zero
means) and a continuous distribution (to account for the nonzero means). An
empirical Bayes version of this approach, where the mixing weight is obtained
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through marginal maximum likelihood, was found to work well for recovery [5], but
no measure of uncertainty quantification was studied. For a fully Bayesian version,
several combinations of priors on the mixing weight and on the nonzero coefficients
(the ‘slab’) were found such that both goals are achieved [2]. Unfortunately, a spike
and slab approach runs into computational difficulties, as it may require exploration
of a model space of size 2n.

Therefore, there is a need for priors that are not only suitable for recovery and
uncertainty quantification, but are also feasible computationally on large data sets.
The horseshoe prior is one such prior. In this paper, we review the theoretical
results for the horseshoe prior, as described in [7]. The work has recently been
extended in [4], and in forthcoming joint work with J. Schmidt-Hieber and J.-B.
Salomond, which will be discussed during the presentation, and briefly in Section
4. We first review the horseshoe prior in Section 2, then discuss some posterior
contraction results from [7] for the horseshoe prior in Section 3.

2 The horseshoe prior

The horseshoe prior was introduced by [1] and has the following hierarchical for-
mulation:

θi | λi, τ ∼ N (0, τ2λ2
i ), λi ∼ C+(0, 1),

for i = 1, . . . , n, where C+(0, 1) is a standard half-Cauchy distribution. We use the
coordinatewise posterior mean Tτ (yi) as our estimator of θi. Figure 1 shows the
prior density on each θi, and the posterior mean as a function of the observation
yi. It illustrates the role of the global parameter τ : decreasing τ leads to more
mass near zero in the prior on θi and a stronger shrinkage effect in the posterior
mean Tτ (y).

Figure 1: (Based on Figure 1 in [7]) The effect of decreasing τ on the prior on θ
(left) and the posterior mean Tτ (y) (right). The solid line corresponds to τ = 1,
the dashed line to τ = 0.05. Decreasing τ results in a higher prior probability of
shrinking the observations towards zero.

The parameter τ controls the sparsity, and results from [7] show that the optimal
choice for τ is the proportion of nonzero means pn/n (up to a log factor). The role
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of the parameters λi is to counteract the shrinkage effect at a local level.
The horseshoe estimator offers a computational advantage over the spike-and-

slab approach, as it can be expressed as follows:

Tτ (yi) = yi

∫ 1

0
z1/2 1

τ2+(1−τ2)z e
y2i /2dz∫ 1

0
z−1/2 1

τ2+(1−τ2)z e
y2i /2dz

.

In case τ is estimated empirically, the posterior mean can be computed by plugging
this estimate into the above expression, circumventing the need to use MCMC. It
can be evaluated via a quadrature routine, or by a representation in terms of
confluent hypergeometric functions, as discussed in [8].

3 Posterior contraction results for the horseshoe

In this section, some posterior contraction results from [7] are discussed. The main
result is Theorem 33, which provides upper bounds on the rate of contraction of
the posterior distribution around the true mean vector, and around the posterior
mean. Denote the class of nearly black vectors by `0[pn] = {θ ∈ Rn : #{i : θi 6=
0} ≤ pn}.

Theorem 33 (Theorem 3.3 in [7]). Suppose Y n ∼ N (θ0, In), n, pn → ∞, pn =
o(n) and τ = (pn/n)α, α ≥ 1. Then:

sup
θ0∈`0[pn]

Eθ0Πτ

(
θ : ‖θ − θ0‖2 > Mnpn log

n

pn

∣∣∣Y n )→ 0,

and

sup
θ0∈`0[pn]

Eθ0Πτ

(
θ : ‖θ − Tτ (Y n)‖2 > Mnpn log

n

pn

∣∣∣Y n )→ 0,

for any Mn →∞.

These upper bounds are equal, up to a multiplicative constant, to the minimax
risk [3]. The contraction rate around the true mean vector θ0 is therefore sharp,
but this is not necessarily the case for the rate of contraction around the posterior
mean Tτ (Y n).

Further investigation into the role of τ (Theorems 3.4 and 3.5 of [7]) shows that
if τ = (pn/n)α for α ∈ (0, 1), the posterior variance may exceed the minimax rate,
indicating suboptimal spread of the posterior. If α > 1, there exists a sequence
θ0,n ∈ `0[pn] for which the mean square error and the posterior variance are of
different orders. If α = 1, the posterior variance and `2 risk only differ by a factor√

log(n/pn), and the gap can even be closed by taking τ = (pn/n)
√

log(n/pn).
Thus, for our goals of recovery and uncertainty quantification, the best choice

for τ is τ = (pn/n)
√

log(n/pn), as in that case both the worst case `2 risk and the
posterior variance are at the order of the minimax risk (Theorems 3.1, 3.2 and 3.4
in [7]).

In practice, the number of nonzero means pn is typically unknown, and hence
the value τ = (pn/n)

√
log(n/pn) cannot be used. However, an empirical Bayes
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procedure, in which τ is estimated from the data, can still yield the (near) minimax
rate for the worst case risk. For example, consider for any c1 > 2, c2 > 1, the
estimator

τ̂ = max

{
#{|yi| ≥

√
c1 log n, i = 1, . . . , n

c2n
,

1

n

}
.

This estimator estimates the number of nonzero means by counting those observa-
tions that are past the universal threshold

√
2 log n. It is bounded below by 1/n for

computational reasons, and because it corresponds to the assumption that there is
at least one nonzero mean. By Theorem 4.1 combined with Lemma A.7 from [7],
the horseshoe estimator combined with this estimator of τ will have a worst case
risk of order pn log n, which is close to the minimax rate unless the truth is not
very sparse.

4 Other sparsity priors

In [4], priors of the form

θi | λ2
i , τ

2 ∼ N (0, λ2
i τ

2), λ2
i ∼ π(λ2

i ), i = 1, . . . , n

are considered, for priors π with density given by

π(λ2
i ) = K

1

(λ2
i )
a+1

L(λ2
i ),

whereK > 0 is a constant and L : (0,∞)→ (0,∞) is a non-constant, slowly varying
function, where ‘slowly varying’ means that there exist c0,M ∈ (0,∞) such that
L(t) > c0) for all t ≥ t0 and supt∈(0,∞) L(t) ≤ M . The horseshoe is contained
in this class of priors, by taking a = 1/2, L(t) = t/(1 + t) and K = 1/π. The
authors prove a posterior contraction theorem of the same type as Theorem 33 for
this class of priors, provided α ∈ [1/2, 1]. Although their results for lower bounds
on the posterior variance are limited to the case a = 1/2, their results extend
those for the horseshoe, showing that the horseshoe is not unique in its desirable
posterior concentration properties. Forthcoming work with J. Schmidt-Hieber and
J.-B. Salomond provides some more general conditions on sparsity priors such that
the posterior concentrates at least as fast as the minimax rate.

Acknowledgements: Research supported by Netherlands Organization for Sci-
entific Research NWO. This paper is based on joint work with Aad van der Vaart,
Bas Kleijn, Johannes Schmidt-Hieber and Jean-Bernard Salomond.
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Abstract: Two scale-free goodness-of-fit tests for exponentiality based on the
recent characterization of exponential law by Yanev and Chakraborty are pro-
posed. Test statistics are functionals of U -empirical processes. The first of these
statistics is of integral type, it is similar to the classical statistics ω1

n. The second
one is a Kolmogorov type statistic. The limiting distribution and large deviations
asymptotic of new statistics under null hypothesis are described. Their local Ba-
hadur efficiency for parametric alternatives is calculated. The Kolmogorov type
statistic is not asymptotically normal, therefore we evaluate the critical values by
using Monte-Carlo methods. For small sample size efficiencies are compared with
simulated powers of new tests. Also conditions of local asymptotic optimality of
new statistics in the sense of Bahadur are discussed and examples of such special
alternatives are given.

Keywords: testing of exponentiality, order statistics, U -statistics, Bahadur effi-
ciency
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1 Introduction

We develop goodness-of-fit tests for exponentiality exploiting a characterization
based on property of order statistics. The problem formulation is as follows: let
X1, X2, . . . , Xn be i.i.d. observations having the continuous df F . Consider testing
of composite hypothesis of exponentiality H0 : F ∈ E(λ), where E(λ) denotes the
class of exponential distributions with the density f(x) = λe−λx, x ≥ 0, where
λ > 0 is some unknown parameter.

Suppose that the df F belongs to the class of distributions F , if the correspond-
ing density f has derivatives of all orders in the neighbourhood of zero.

Arnold and Villasenor in [1] conjectured, and Yanev and Chakraborty in [8]
proved that the following characterized the exponential law within the class F :

Let X1, . . . , Xn be non-negative i.i.d. rv’s with df F from class F . Then the
statistics max(X1, X2, X3) and max(X1, X2) + X3

3 are identically distributed if and
only if the df F is exponential.

∗Corresponding author: efrksenia@gmail.com
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Consider the usual empirical df Fn(t) = n−1
∑n
i=1 1{Xi < t}, t ∈ R1, based on

the observations X1, . . . , Xn. According to the characterization we construct for
t ≥ 0 the U -empirical df’s by the formulae

Hn(t) =

(
n

3

)−1 ∑
1≤i1<i2<i3≤n

1{max(Xi1 , Xi2 , Xi3) < t}, t ≥ 0,

Gn(t) =
1

3

(
n

3

)−1 ∑
1≤i1<i2<i3≤n

[1{max(Xi1 , Xi2) +
Xi3

3
< t}+

+ 1{max(Xi2 , Xi3) +
Xi1

3
< t}+ 1{max(Xi3 , Xi1) +

Xi2

3
< t}], t ≥ 0.

It is known that the properties of U -empirical df’s are similar to the properties
of usual empirical df’s, see [2]. Hence for large n the df’s Hn and Gn should be
close under H0, and we can measure their closeness by using some test statistics.

We suggest two scale-invariant statistics

In =

∫ ∞
0

(Hn(t)−Gn(t)) dFn(t), (1)

Dn = sup
t≥0
| Hn(t)−Gn(t) |, (2)

assuming that their large values are critical.

2 Integral statistic In

Without loss of generalization we can assume that λ = 1. The statistic In is
asymptotically equivalent to the U -statistic of degree 4 with the centered kernel
Ψ(X1, X2, X3, X4) given by

Ψ(X1, X2, X3, X4) =
1

4

∑
π(i1,...,i4)

1{max(Xi1 , Xi2 , Xi3) < Xi4}−

− 1

24

∑
π(i1,...,i4)

1{max(Xi1 , Xi2) +
Xi3

3
< Xi4},

where π(i1, . . . , i4) means all permutations of different indices from {i1, . . . , i4}.
Theorem 34. Under null hypothesis as n → ∞ the statistic In is asymptotically
normal with asymptotic variance given by

√
nIn

d−→ N (0,
23

10920
).

2.1 Large deviations of the statistic In

The kernel Ψ is centered, bounded and non-degenerate. Hence according to the
theorem of large deviations for such statistics from [5], we obtain the following
result.
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Theorem 35. For a > 0

lim
n→∞

n−1 lnP (In > a) ∼ 5460

23
a2, as a→ 0.

3 Kolmogorov-type statistic Dn

Now we consider the Kolmogorov type statistic (2). Its indisputable merit is con-
sistency against any alternative that follows directly from the characterization as
such, while the integral statistic In is not always consistent.

In our case for fixed t ≥ 0 the difference Hn(t)−Gn(t) is a family of U -statistics
with the kernels, depending on t ≥ 0 :

Ξ(X,Y, Z; t) = 1{max(X,Y, Z) < t} − 1

3
1{max(X,Y ) +

Z

3
< t}−

−1

3
1{max(Y,Z) +

X

3
< t} − 1

3
1{max(X,Z) +

Y

3
< t}.

Limiting distribution of the statistic Dn is unknown. Using the methods of [6],
one can show that the U -empirical process

ηn(t) =
√
n (Hn(t)−Gn(t)) , t ≥ 0,

weakly converges in D(0,∞) as n → ∞ to certain centered Gaussian process η(t)
with calculable covariance. Then the sequence of statistics

√
nDn converges in

distribution to the rv supt≥0 |η(t)| but it is impossible to find explicitly its distri-
bution. Hence it is reasonable to determine the critical values for statistics Dn by
simulation.

3.1 Large deviations of the statistic Dn

The family of kernels {Ξ(X,Y, Z; t)}, t ≥ 0 is not only centered but bounded. Using
the results from [4] on large deviations for the supremum families of non-degenerate
U -statistics, we obtain the following result.

Theorem 36. For a > 0

lim
n→∞

n−1 lnP (Dn > a) ∼ 4.966a2, as a→ 0.

4 Local Bahadur efficiencies of statistics In and Dn

We present the following alternatives against exponentiality which will be consid-
ered for all tests when x ≥ 0:

i) Makeham distribution with the density g1(x, θ) =
(
1 + θ(1 − e−x)

)
exp

(
−

x− θ(e−x − 1 + x)
)
, θ > 0;

ii) Weibull distribution with the density g2(x, θ) = (1 + θ)xθ exp(−x1+θ), θ > 0;
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iii) gamma distribution with the density g3(x, θ) = xθ

Γ(θ+1)e
−x, θ > 0;

iv) exponential mixture with negative weights (EMNW(β)) (see [3]) g4(x) =

(1 + θ)e−x − θβe−βx, θ ∈
[
0, 1

β−1

]
, β > 1.

We calculate the efficiencies of both statistics against common alternatives from
the class F . The statistic Dn has the non-normal limiting distribution, hence we
use the Bahadur approach as a method of calculation of asymptotic efficiency,
while the classical Pitman approach to efficiency is not applicable. However, it is
known that the local Bahadur efficiency and the limiting Pitman efficiency usually
coincide, see [7]. Finally, we analyze the conditions of local asymptotic optimality
of our tests and describe the ”most favorable” alternatives for them.

We supplement our research with simulated powers which principally support
the theoretical values of efficiency.
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Abstract: The problem of parameter estimation for models defined by a system
of ordinary differential equations (ODEs) is considered. The most efficient way to
explore the parameter space is by using derivative information. Usual approaches
for obtaining the gradient in ODEs setting like solving sensitivity equations and
using finite difference formulas are computationally costly and not scalable to large
scale systems. In this paper we use simultaneous perturbation gradient approxi-
mation (SPGA), originally proposed in stochastic optimization literature, as a sub-
stitute for the gradient in Metropolis adjusted Langevin algorithm (MALA). The
obtained algorithm, called Simultaneous Perturbation Gradient Approximation ba-
sed Metropolis Adjusted Langevin Markov chain Monte Carlo (SPGA MALA), re-
quires at most three integration of the ODE system per MCMC step, regardless of
the dimension of the system. This fixed computational costs makes SPGA MALA
applicable to large scale systems. On the other hand, its efficiency is comparable
to that of MALA. We demonstrate the performance of via simulations.

Keywords: Metropolis adjusted Langevin Markov Chain Monte Carlo methods,
simultaneous perturbation gradient approximation, ordinary differential equations,
parameter estimation

AMS subject classifications: 60J22, 65C40, 62F15

1 Introduction

Systems of ordinary differential equations (ODEs) are widely used in science and
engineering for the mathematical modelling of various dynamic processes. We
consider the system of the form{

x′(t) = f(x(t), t;θ), t ∈ [0, T ],
x(0) = ξ,

(1)

where x(t) = (x1(t), . . . , xd(t))
> ∈ Rd is a state vector, ξ in Ξ ⊂ Rd is the initial

condition, θ in Θ ⊂ Rp is a parameter and f is a known function. Given the
values of ξ and θ, we denote the solution of (1) by x(t;θ, ξ). Let us assume that
a process is modelled by the system (1) with ξ0 known and θ0 unknown. For

∗Corresponding author: i.vujacic@vu.nl
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simplicity, assume that we have noisy observations yi(tj), j = 1, . . . , n of all the
states xi(t;θ0, ξ0), i = 1, . . . , d at time points tj ∈ [0, T ], j = 1, . . . , n:

yi(tj) = xi(tj ;θ0, ξ0) + εi(tj), i = 1, . . . , d; j = 1, . . . , n,

where εi(tj) ∼ N (0, σ2
i ). The problem is to estimate θ0 from the data Y =

(yi(tj))ij . The methodology presented here can also be used if ξ0 is unknown and
some of the states are unobserved.

In this paper, we adopt Bayesian approach to inference. For some prior density
π of θ the posterior density is

p(θ|Y, ξ0,σ) = π(θ)

d∏
j=1

N{Yj,·|X(θ, ξ0)j,·, σjIn},

where σ = (σ1, . . . , σd), X(θ, ξ0) = (xi(tj ;θ, ξ0))ij and In is an identity matrix of
order n. For exploring the parameter space there is an advantage in using gradient
information in MCMC and optimization methods [3, 4]; for concrete examples in
ODE estimation setting see [4, 6]. In the problem we consider, the gradient of the
log-likelihood can be obtained by solving sensitivity equations, which are of order
dp or via the finite difference formulas, which require solving the ODE system at
least p times. Both approaches are computationally costly and not scalable to large
scale systems.

In this paper, we avoid huge computational burden by using simultaneous per-
turbation stochastic approximation (SPGA), introduced by Spall [7]. To obtain
SPGA, the system of the form (1) need be solved at most 2 times, regardless of
the dimension of the system. By using SPGA instead of the gradient in Metropo-
lis adjusted Langevin Markov Chain Monte Carlo (MALA) we obtain a method,
which we call SPGA MALA, that can be used for large scale systems. Although
there is some loss in efficiency of SPGA MALA due to using an approximation of
the derivative this is outweighed by huge computational savings achieved.

The rest of the paper is organized as follows. In sections 2 and 3 reviews of
MALA and SPGA are provided, respectively. Section 4 introduces the proposed
method. In Section 5 we compare performance of MALA and SPGA MALA on
simulated data for various models.

2 Metropolis adjusted Langevin Markov chain
Monte Carlo (MALA)

For the probability density p(θ) let L(θ) = log{p(θ)} denote the log-density. The
MALA proposal [4, p.130] is

θ∗ = θk + ε2M∇θL(θk)/2 + ε
√

Mzk, (2)

where θk is the value at k-th step, z ∼ N (z|0, Ip), ε > 0 is the step size and M is
the weight matrix. The proposal density and acceptance probability are

q(θ∗|θk) = N (θ∗|µ(θk, ε), ε2M),
α = min{1, p(θ∗)q(θk|θ∗)/p(θk)q(θ∗|θk)}, (3)
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respectively, where µ(θk, ε) = θk + ε2M∇θL(θk)/2. The advantage of MALA over
random walk Metropolis algorithm is that it uses the gradient information which
leads to better exploration of the parameter space. Disadvantage is that it requires
selection of the weight matrix M. In [4], a fully automated algorithm is proposed
for this but it cannot be used in our setting because it requires derivatives. For
more details regarding MALA see [2, 4].

3 Simultaneous perturbation gradient approxima-
tion (SPGA)

In order to estimate partial derivatives via finite difference (FD) approximation the
parameter perturbations are performed along each coordinate separately. For ex-
ample, the estimate of the j-th partial derivative of L(θk) via the central difference
formula is

∂L(θk)

∂θj
≈ L(θk + hej)− L(θk − hej)

2h
,

where ej is the j-th unit vector and h is sufficiently small. This requires 2p eval-
uations of L. With simultaneous perturbation (SP), introduced by Spall [7], all
elements of θk are randomly perturbed together. The two sided simultaneous per-
turbation gradient approximation (SPGA) is

∇̂θL(θk) =
L(θk + h∆)− L(θk − h∆)

2h
(∆−1

1 ,∆−1
2 , . . . ,∆−1

p )>, (4)

where ∆ = (∆1,∆2, . . . ,∆p)
> is usually a random vector of independent Bernoulli

random variables that take values −1 and 1 with probability 0.5, although other
choices are possible. Two sided SPGA requires two evaluations of L regardless
of the dimension p. FD approximation is superior to SP approximation as an
estimator of the gradient. However, Spall [7] showed that when used in stochas-
tic optimization setting they achieve the same level of statistical accuracy for a
given number of iterations in terms of estimation of the optimum of the objective
function. In the next section, we follow the same idea but in the MCMC setting.

4 Simultaneous perturbation gradient approxima-
tion based Metropolis adjusted Langevin Mar-
kov chain Monte Carlo (SPGA MALA)

SPGA MALA proposal is obtained by substituting the gradient in MALA proposal
(2) with its SPGA, defined in (4):

θ∗ = θk + ε2M∇̂θL(θk)/2 + ε
√

Mzk. (5)

In view of the MALA proposal density in (3), we require that the density of θ∗

given θk and ∆ is q(θ∗|θk,∆) = N (θ∗|µ̂(θk, ε,∆), ε2M), where µ̂(θk, ε,∆) = θk +

ε2M∇̂θL(θk)/2. Since ∆ can take 2p values with equal probability it follows that
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the density of θ∗ given θk is the mixture density q(θ∗|θk) = 1
2p

∑
∆ q(θ∗|θk,∆).

The proposal mechanism (5) with proposal density q and standard accepetance
probability α = min{1, p(θ∗)q(θk|θ∗)/p(θk)q(θ∗|θk)} defines a valid Markov chain;
it is simply Metropolis Hastings (MH) algorithm where the proposal is a mixture
density q. However, evaluating α is intractable for large p. Because of this, instead
of α we use

α∆ = min{1, p(θ∗)q(θk|θ∗,∆)/p(θk)q(θ∗|θk,∆)}.

In other words, instead of using q which involves calculation of each q(θ∗|θk,∆)
for 2p possible values of ∆, we use the acceptance ratio which involves calculation
of q(θ∗|θk,∆) only for the drawn value of ∆.
This algorithm defines a valid Markov chain since it can be viewed as Metropolis-
Hastings-Green(MHG) algorithm [2, p.41]. MHG algorithm allows state-dependent
mixing or random proposals [1], meaning that on each step the proposal distribution
need not be fixed but can belong to a countable family of proposal distributions.
In our case it is a finite family {q(θ∗|θk,∆) : ∆ = (∆1, . . . ,∆p),∆i ∈ {−1, 1}}.
Using the random proposal instead of the mixture proposal comes with a price. As
pointed out in the discussion section of the article [1], the random proposal method
is less efficient because it accepts fewer proposals. This reduces efficiency of SPGA
MALA. The second reason for reduced efficiency of SPGA MALA is that instead
of the gradient its approximation is used. However, it is clear that SPGA MALA
will be much faster than MALA for large scale systems.

5 Numerical results

In this section we compare the described algorithm to MALA on simulated data
generated from the following models.
Fitz Hugh Nagumo (FHN) example. Fitz-Hugh Nagumo system [4] models
the behaviour of spike potentials in the giant axon of squid neurons. It has the
form

x′1(t) = θ3{x1(t)− x1(t)3/3 + x2(t)},
x′2(t) = − 1

θ3
{x1(t)− θ1 + θ2x2(t)}.

We used different notation than in [4], namely (x1, x2) for (V,R) and (θ1, θ2, θ3)
for (a, b, c). We set θ = (0.2, 0.2, 3) and ξ = (−1, 1).
α- pinene example. The following model describes the thermal isomerization of
α-pinene [8].

x′1(t) = −(θ1 + θ2)x1(t),
x′2(t) = θ1x1(t),
x′3(t) = θ2x1(t)− (θ3 + θ4)x3(t) + θ5x5(t),
x′4(t) = θ3x3(t),
x′5(t) = θ4x3(t)− θ5x5(t).

The values of the parameters that we used are θ = (0.1, 0.1, 0.3, 0.1, 0.3) and ξ =
(1, 0, 0, 0, 0).
Hockin model. In [5], a model of the extrinsic blood coagulation is developed
and consists of 34 differential equations and 42 rate constants. Due to lack of space
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we do not present the model but refer the reader to the aforementioned reference.
We fixed 32 parameters and estimated the remaining 10. The value of the selected
parameter was set to θ = (0.1, 0.4, 0.1, 0.32, 0.2, 1.05, 2.4, 6, 1.8, 8.2).

From each of the models presented above we generated 200 data points on the
interval [0, 20] and added Gaussian-distributed noise with standard deviation equal
to 0.5. In SPGA (see (4)) we set h = 10e−5 while the gradient in MALA is obtained
by solving sensitivity equations. Ideally, the tuning parameters in MALA should
be chosen in such a way that acceptance rate is between 40% and 70%. As it was
pointed out in Section 2, tuning of MALA is an issue. To simplify, for both MALA
and SPGA MALA we set M = Ip, ε = 0.0002p−1/3 in all the simulations. This
selection achieves the desired acceptance rate in FHN model and was used in [4].
For the other two models this is not the case. However, the most important thing
here is to compare the performance of these two methods for the same selection of
tuning parameters. For comparing sampling efficiency we followed approach used
in [4]. A single Markov chain was initialized on the true mode and 5000 posterior
samples were collected. The effective sample size (ESS) for each parameter was
calculated; the minimum of ESS was used to calculate the time per effectively
independent sample. For each method we ran 10 simulations, using the same data
set. The methods were implemented in the interpreted language MATLAB and all
computations were carried out on an Intel Core i5 computer with 1.3 GHz processor
speed and 4 GB of memory. The results of our simulations are presented in Table 1.

The results of FHN example demonstrate loss in efficiency of SPGA MALA with
respect to MALA; see Section 4 for the discussion. In α-pinene example MALA is
still faster even though the sensitivity equations are of order 25. This is because
the original system and the system of sensitivity equations are both linear. The ex-
ample of Hockin model show the advantage of SPGA MALA. Sensitivity equations
are of order 340 and this heavily affects the computatation time of MALA. On the
other hand, the computation time of SPGA MALA is much smaller compared to
that of MALA, making it much better in terms of the relative speed per effectively
independent sample.
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