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The problem

Have p independent Poisson observations,

Yi ∼ P(θi ), 1 ≤ i ≤ p.

Want to estimate θ1, . . . , θp. Often we will also be interested in
estimating γ =

∑p

i=1 θi .
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Shrinkage estimators
Usual loss functions when estimating θ1, . . . , θp are,

Lm(δ, θ) =

p
∑

i=1

1

θm
(δi − θi )

2,

with m = 0, 1.
Peng (1975) derived

δPi (Y ) = Yi −
max{0,N0(Y )− 2}
∑p

j=1 h
2
j (Yj)

hi (Yi )

where N0(Y ) = #{i : Yi > 0} and hi (Yi ) =
∑Yi

k=1 k
−1 if Yi > 0, zero

otherwise. δP dominates the MLE under L0 when p ≥ 3.
Clevenson and Zidek (1975) showed that

δCZ (Y ) =

(

1−
p − 1

p − 1 + Z

)

Y ,

where Z =
∑p

i=1 Yi dominates the MLE under L1 when p ≥ 2.
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Possible deficiencies

Both δP and δCZ shrink the MLE (= Y ) towards zero. As a consequence,
they might give

◮ Implausible estimates of individual θi ’s.

◮ A bad estimate of γ =
∑p

i=1 θi .

Both of these deficiencies can be adressed in the same way, that is by
“limiting translation” (Efron and Morris, 1972) away from the MLE.
Consider problem of estimating γ under the loss function (δ − γ)2/γ.
Here the MLE Z is the unique minimax solution (hence admissible).

Lc(δ, θ) =

p
∑

i=1

1

θi
(δi − θi )

2 +
c

γ

(

p
∑

i=1

δi − γ

)2

,

where c ≥ 0 is a user-defined constant.
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Improved estimators

R(Y , θ) = EθLc(Y , θ) = p + c .

Seek an estimator with risk < p + c .
Using Stein’s idea (e.g. Stein (1981)) we derive difference inequalities,
solve these and obtain a class of estimators given by

δc(Y ) =

(

1−
ψ(Z )

p − 1 + (1 + c)Z

)

Y ,

where 0 < ψ(z) ≤ 2(p − 1) is non-decreasing for all z ≥ 0. The optimal
ψ in terms of minimizing risk is ψ = p − 1.
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δ
c dominates the MLE

Theorem: Under the loss function Lc

R(δc , θ) < R(MLE, θ),

for all θ ∈ Θ.
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δ
c under L1

Corollary: Under weighted squared error loss L1,

R(δc , θ) < R(MLE, θ),

for all θ ∈ Θ.
Intuitively, this makes sense because for all 0 < c <∞,

δCZi < δci < Yi , 1 ≤ i ≤ p.

In the sense, the new estimator is a compromise between δCZ and the
MLE. What value of c gives the desired compromise?
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One way to choose c

Since Z is unique minimax in estimating γ under (δ − γ)2/γ, and

δc → Y when c → ∞,

a big c is preferable when estimating γ with δc . In the composite
problem of estimating θ1, . . . , θp under

L1(δ, θ) =

p
∑

i=1

1

θi
(δi − θi )

2,

c = 0 is the optimal choice.
Pick the smallest c ≥ 0 that ensures that

Eγ

1

γ

(

∑

i
δci − γ

)2

− 1 ≤ K ,

for some value K and a prior guess of γ.
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An example

θi 1/θi (δ
CZ
i − θi )

2 1/θi (δ
c
i − θi )

2

1.48 33.57 14.25
0.68 39.55 14.36
1.84 30.45 13.44
1.24 34.99 13.70
1.46 33.96 14.71
1.38 34.21 13.96
1.64 31.72 13.27
1.46 33.59 14.25
6.98 -11.54 7.15
6.91 -11.25 6.70
L1 24.93 12.58
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Bayesian analysis

Recall the class of estimators

δc(Y ) =

(

1−
ψ(Z )

p − 1 + (1 + c)Z

)

Y ,

where the estimator with ψ = p − 1 is the optimal in terms of minimizing
risk. Gain insight into the nature of these estimators by deriving them by
Bayesian methods in three different ways.

◮ Pure: θi iid Gamma(1, b), b ∼ π(b) ∝ bα−1(b + 1)−(α+β).

◮ Empirical: Estimate b from data, find unbiased estimator.

◮ Generalized: θi = αiλ with (α1, . . . , αp) ∼ Dirichlet(a1, . . . , ap), and
λ flat on [0,∞).
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Admissibility

Pure Bayes setup again, θi iid Gamma(1, b). Let,

b ∼ π(b) ∝ bm−2(b + 1)−m.

then π(b) is proper for m > 1, so

δc(Y ) =

(

1−
m + p − 1

m + p − 1 + (1 + c)Z

)

Y ,

is admissible.
Would like to prove that the optimal estimator in terms of minimizing
risk (m = 0) is admissible.
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