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José Sánchez Network sparsity selection 3 / 27



Introduction

Network Modeling

Goals

Construct regulatory networks and predictive models

Identify disease-specific key regulators and their targets

Relate the network structure to patient survival or clinical subtypes

Data now available at multiple levels

(Epi)Genetic variation: single-point
mutations, copy number aberrations,

loss of heterozygosity, methylation

mRNA, miRNA

clinical: age, survival,...
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Introduction

Estimation methods

Correlation based methods

Assume genes to be N(µ,Σ). The network given by the non-zeros of the
thresholded empirical correlation matrix. Alternatively threshold a power
of the empirical correlation matrix (Langfelder and Horvath, 2008).

Partial correlation based methods

Assume genes to be N(µ,Σ). The links for the gene network are given by
the non-zeros of Θ = Σ−1 (Friedman et al., 2008).

Information theory based methods

Connectivity between genes is given by the mutual information. The links
most pass a significance threshold and the data processing inequality
(Margolin et al., 2006).
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Introduction

More on partial correlation based methdos

In general the number of genes is larger than the number of samples,
p >> N, thus the empirical covariance matrix is not invertible. Assuming
X ∼ N(µ,Σ), maximize the L1 penalized likelihood function for the
precision matrix Θ

l(Θ) = ln [det (Θ)]− tr (SΘ)− λ‖Θ‖1

where S = 1
NX

TX is the empirical covariance matrix, ‖Θ‖1 =
∑

i 6=j |θij |.
The parameter λ > 0 controls the degree of sparsity in Θ.

Goal

Select sparsity level (λ).
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Introduction

What has been done using bootstrap?

Generate B bootstrap samples choosing randomly 90% of the samples and
let θ̂ij ,b be the b-th bootstrap estimate for link (i , j), then

hij ,λ =
1

B

B∑
b=1

I
(∣∣∣θ̂ij ,b∣∣∣)

is an estimate of the probability of presence of link (i , j). Final sparsity
and differentiality levels are selected thresholding nij by some T > 0.

A proposal (de Matos Simoes and Emmert-Streib, 2012) is to select T by
data simulation from the null distribution (a random network), and test for
the presence of each link.
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Method

Presence distribution
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Method

The Beta-Binomial mixture model

Netwok estimates comprise two link populations: negatives (N) and
positives (P).

Natural parameters of interest: FPR, which is the average rate N →
FP; and TPR, the inverse of the average failure rate P → FN.

Let p0(i , j) be the edge-specific failure rate for N → FP, and p1(i , j)
the rate for P → FN. We model pl(i , j) ∼Beta(αl , βl).

Let xij ,λ =
∑B

b=1 I
(∣∣∣θ̂bij ,λ∣∣∣), then xij ,λ is an observation of Xij ,λ with

the following distribution

fXij,λ
(k) = π0

(B
k

)Be(k + α0, k + β0)

Be(α0, β0)
+ (1− π0)

(B − k

k

)Be(B − k + α1,B − k + β1)

Be(α1, β1)

where Be is the Beta function defined as Be(x , y) =
∫ 1

0
tx−1(1− t)y−1.
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Method

Presence distribution estimated by EM
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Method

Sparsity selection

From the Beta-Binomial model we estimate the average false positive
rate as µ̂0 = µ̂0(λ) = α0

α0+β0
.

We propose to select the sparsity level λ that keeps the FPR below
some predetermined value t (t = 0.05, for example). The optimal
estimated network size, N∗, becomes the one that corresponds to
λ∗ = max{λ : µ̂0(λ) < t}.
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Method

Final network estimate

Let ∆ij be the unobserved true class (P eller N) of edge (i , j),

γij(α0, β0, α1, β1, π0) = E (∆ij |α0, β0, α1, β1, π0;Xij ,λ) and let α̂0, β̂0,
and π̂0 be the Beta-Binomial parameter estimates corresponding N∗.

The E-Step of the Beta-Binomial mixture model we get

γ̂ij =
π̂0BetaBin(xij ,λ; α̂0, β̂0)

π̂0BetaBin(xij ,λ; α̂0, β̂0) + (1− π̂0)BetaBin(xij ,λ; α̂1, β̂1)

as a class expected value of edge (i , j).

The final network is thus constructed by removing edges where
γ̂ij < 0.5.
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Method

Final network estimate

We present also two methods based on thresholding the aggregated
boostrap networks.

Edge presence for estimated
networks, requires validation.

Node-degree preserved
permuted networks, more
principled method.

Permuted network, most
generous.
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Method

Flow chart

A Bootstrap estimation

B Model fitting

C Robust estimate construction

A

B

C Thresholding Model classification
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Simulation study

Data generation

Gene expression data set for 509 glioblastoma tumors and 10321
genes from The Cancer Genome Atlas.

Select 100 genes randomly among the most strongly connected genes.

Using glasso we construct two true networks: a sparse one with about
13% non-zeros and a dense one with about 21% non-zeros.

Data is generated as realizations of multivariate normal distributions
whose covariance matrices are given by the inverses of the true
networks.
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Simulation study

Sparsity selection methods

We compare our method, BB, with the following

The DIP statistic (Hartigan and Hartigan, 1985), defined as
D(F ) = supx |F (x)− U(x)| for F any distribution function and U the
uniform distribution.

Bayesian information criterion, BIC, defined as

BIC(Θ̂) = n
[
ln |Θ̂|+ tr(SΘ̂)

]
+ ln(n)

∑
i<j I(|θij |).

Cross-validation.
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Simulation study

Network size selection performance
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Beta-Binomial and DIP have the best FPR control, additionally, they have
the best agreement with the true network in the sparse case.
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Simulation study

Robust estimate performance
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Beta-Binomial and DIP have better F1 measure across all network
construction methods.
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Simulation study

Robust estimate performance
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Beta-Binomial and DIP control the FPR at low levels.
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Simulation study

Robust estimate performance
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Beta-Binomial and DIP achieve the best F1 for permuted networks, which
are in general denser.
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Simulation study

Robust estimate performance
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Simulation study

Application to cancer genomic data

Expression data from The Cancer Genome Atlas from 266 ovarian
cancer tumors comprising 20500 genes.

Remove genes without variability and keep pairs whose correlation is
above 0.7, resulting in 5600 genes.

Estimate the bootstrap network with glasso. Due to the screening
process we only need to apply high treshold values, thus being able to
estimate only smaller connected components (Danaher et al., 2014).

We discard the smallest components, finally focusing on
approximately 2000 genes.
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Simulation study

Network size selection

Network size selection

Network size
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Beta-Binomial and DIP select relatively small networks while CV and BIC
seem to fail.
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Simulation study

Networks overlap with biological pathways
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Best FE are achieved for smaller networks with Beta-Binomial and degree
preserved permutation post-processing.
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Future work

Future work

We introduce a framework that uses bootstrap in a principled way to perform network
sparsity selection and robust estimate construction. Through simulations we show that,
given network estimation method, sample size, dimensionality and signal to noise ratio,
sparsity selection should be guided by FP control rather than matching the (unknown)
true network size. Our method successfully controls FPR in different sparsity settings
and outperforms CV and BIC.

An extension to the group and fused graphical lasso is ongoing, some preliminary
results are available.

Extension to local sparsity and group/fusing selection. Edge independency
assumption can be violated here, this is a limitation our method we plan to explore.

Computational burden can be reduce by letting the FPR guide the sparsity level for
the bootstrap networks (line search).

Our method is not restricted to FPR control. Following (Li et al., 2013), other
accuracy measures such as FDR can guide sparsity selection. As future work we
will compare with this method and with other accuracy measures.

The network post-processing proposed here, Beta-Binomial, controls FPR. Control
of FP inclusion can be improved by meand some other measure such as FDR.
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Future work

BINCO

Collect frequency statistics from bootstrap.

Determine if the count distribution is U-shaped and find (V1,V 2], the
interval where the distribution is monotonically decreasing.

Obtain the null density estimate by(
π̂, θ̂
)

= argminπ,θL
(
f λ, (1− π)hθ

)
,

where hθ is the Beta-Binomial distribution, L denotes the Kullback-Leibler
distance in (V1,V2].

Compute the FDR for all models Sλc by

FDR(Sλc ) =

∑
x≥c(1− π)f λ0 (x)∑

x≥c f
λ(x)

,

where f λ is the empirical estimate of the edge frequency distribution.

Obtain c∗(λ) = min{c : FDR(Sλ
c ) ≤ α} and N̂E (Sλ

c ) = |Sλ
c |(1− FDR(Sλ

c )).

The optimal regularization parameter is given by λ∗ = argmaxλN̂E (Sλ
c∗(λ)).
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