# Kernel density estimation with directional data under rotational symmetry



Eduardo García-Portugués (egarcia@math.ku.dk)

Department of Mathematical Sciences and The Bioinformatics Centre University of Copenhagen

Joint work with C. Ley and T. Verdebout (Université Libre de Bruxelles)

EYSM, Prague, 31st August 2015





#### Introduction

Rotasymmetry KDE with directional data

# Density estimation under rotasymmetry

The rotasymmetrizer Rotasymmetric KDE

#### **3** Simulation study



#### Introduction

Rotasymmetry KDE with directional data

Density estimation under rotasymmetry The rotasymmetrizer Rotasymmetric KDE

#### 3 Simulation study



Eduardo García-Portugués



$$\Omega_q = \left\{ \mathbf{x} \in \mathbb{R}^{q+1} : ||\mathbf{x}|| = 1 
ight\}.$$

- Particular cases are the circle (q = 1) and the sphere (q = 2).
- Statistical methods must account for the special nature of directional data.
- Present in different applied fields: corner stone in protein modelling.



Figure: Circular von Mises density.





$$\Omega_q = \left\{ \mathbf{x} \in \mathbb{R}^{q+1} : ||\mathbf{x}|| = 1 
ight\}.$$

- Particular cases are the circle (q = 1) and the sphere (q = 2).
- Statistical methods must account for the special nature of directional data.
- Present in different applied fields: corner stone in protein modelling.



#### Figure: Spherical von Mises density.





$$\Omega_q = \left\{ \mathbf{x} \in \mathbb{R}^{q+1} : ||\mathbf{x}|| = 1 
ight\}.$$

- Particular cases are the circle (q = 1) and the sphere (q = 2).
- Statistical methods must account for the special nature of directional data.
- Present in different applied fields: corner stone in protein modelling.









$$\Omega_q = \left\{ \mathbf{x} \in \mathbb{R}^{q+1} : ||\mathbf{x}|| = 1 
ight\}.$$

- Particular cases are the circle (q = 1) and the sphere (q = 2).
- Statistical methods must account for the special nature of directional data.
- Present in different applied fields: corner stone in protein modelling.









## Von Mises-Fisher distribution

The most well known directional distribution is the von Mises-Fisher (vMF), with density:

$$f_{\rm vMF}(\mathbf{x};\boldsymbol{\mu},\kappa) = C_q(\kappa) \exp\left\{\kappa \mathbf{x}^{\mathsf{T}} \boldsymbol{\mu}\right\}, \quad C_q(\kappa) = \frac{\kappa^{\frac{q-1}{2}}}{(2\pi)^{\frac{q+1}{2}} \mathcal{I}_{\frac{q-1}{2}}(\kappa)}$$

parametrized by a mean  $\mu \in \Omega_q$  and a concentration  $\kappa \geq 0$ .

Density wrt the Lebesgue measure ω<sub>q</sub> in Ω<sub>q</sub>. ω<sub>q</sub> denotes also the area surface of Ω<sub>q</sub>:

$$\omega_q \equiv \omega_q(\Omega_q) = 2\pi^{rac{q+1}{2}}/\Gamma\Big(rac{q+1}{2}\Big).$$

• Gaussian analogue (isotropic):

**1** Same MLE characterization property.  
**2** If 
$$\mathbf{X} \sim \mathcal{N}_{q+1}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_{q+1})$$
, with  $\boldsymbol{\mu} \in \mathbb{R}^{q+1} \setminus \{\mathbf{0}\}$  and  $\sigma^2 > 0$ , then

$$\mathbf{Y} = \left(\mathbf{X} \mid ||\mathbf{X}|| = 1\right) \sim vM\left(\frac{\mu}{||\boldsymbol{\mu}||}, \frac{||\boldsymbol{\mu}||}{\sigma^2}\right).$$



## **Rotasymmetry I**

- A recurrent assumption about a directional rv X is rotational symmetry (or rotasymmetry) about some direction θ ∈ Ω<sub>q</sub>.
- In the circular case, rotasymmetry is reflective symmetry, a feature appearing in most of the distributions.
- In the high-dimensional situation, rotasymmetry is behind many celebrated distributions such as the vMF.



Figure: Rotasymmetry in the circular and spherical cases.



Eduardo García-Portugués



- It is a building block in numerous contributions: inference, simulation, descriptive statistics.
  - - Saw, J. G. (1978). A family of distributions on the *m*-sphere and some hypothesis tests. *Biometrika*, 65:69–73.

- Bingham, C. and Mardia, K. V. (1978). A small circle distribution on the sphere *Biometrika*, 65:379–389.
- Wood, A. T. A (1994). Simulation of the von Mises Fisher distribution. *Commun. Stat. Simulat.*, 23:157–164.
- Ley, C., Swan, Y., Thiam, B. and Verdebout, T. (2013). Optimal *R*-estimation of a spherical location. *Statist. Sinica*, 23:305–332.
- F
- Ley, C., Sabbah, C. and Verdebout, T. (2014). A new concept of quantiles for directional data and the angular Mahalanobis depth. *Electron. J. Stat.*, 8:795–816.



## Rotasymmetry III

#### Proposition (Rotasymmetry characterization)

Let X a directional rv with density f. These statements are equivalent:

- **3**  $\mathbf{X} \stackrel{d}{=} \mathbf{O}\mathbf{X}$ , where  $\mathbf{O} = \boldsymbol{\theta}\boldsymbol{\theta}^{T} + \sum_{i=1}^{q} \mathbf{b}_{i}\mathbf{b}_{i}^{T}$  is a rotation matrix on  $\mathbb{R}^{q+1}$  that fixes  $\boldsymbol{\theta} \in \Omega_{q}$ .
- **2**  $f(\mathbf{x}) = g(\mathbf{x}^T \boldsymbol{\theta}), \forall \mathbf{x} \in \Omega_q, \text{ where } g: [-1,1] \longrightarrow \mathbb{R}^+ \text{ is a link}$ such that  $f^*(t) = \omega_{q-1}g(t)(1-t^2)^{\frac{q}{2}-1}$  is a density in [-1,1].
- Rotasymmetry is related with the tangent-normal decomposition:

$$\mathbf{x} = t \boldsymbol{ heta} + (1-t^2)^{rac{1}{2}} \mathbf{B}_{\boldsymbol{ heta}} \boldsymbol{\xi}, \quad \omega_q(d\mathbf{x}) = (1-t^2)^{rac{q}{2}-1} \, dt \, \omega_{q-1}(d\boldsymbol{\xi}),$$

with  $t = \mathbf{x}^T \boldsymbol{\theta} \in [-1, 1]$ ,  $\boldsymbol{\xi} \in \Omega_{q-1}$  and  $\mathbf{B}_{\boldsymbol{\theta}} = (\mathbf{b}_1, \dots, \mathbf{b}_q)_{(q+1) \times q}$ such that  $\mathbf{B}_{\boldsymbol{\theta}}^T \mathbf{B}_{\boldsymbol{\theta}} = \mathbf{I}_q$  and  $\mathbf{B}_{\boldsymbol{\theta}} \mathbf{B}_{\boldsymbol{\theta}}^T = \mathbf{I}_{q+1} - \boldsymbol{\theta} \boldsymbol{\theta}^T$ .

No monotonicity required in g, axial variables are covered as well.



8 / 26

Eduardo García-Portugués



► For a sample X<sub>1</sub>,..., X<sub>n</sub> ~ f, the Kernel Density Estimator (KDE) for directional data is

$$\hat{f}_h(\mathbf{x}) = \frac{c_{h,q}(L)}{n} \sum_{i=1}^n L\left(\frac{1-\mathbf{x}^T \mathbf{X}_i}{h^2}\right) = \frac{1}{n} \sum_{i=1}^n L_h\left(\mathbf{x}, \mathbf{X}_i\right), \quad \mathbf{x} \in \Omega_q.$$

Bai, Z. D., Rao, C. R. and Zhao, L. C. (1988). Kernel estimators of density function of directional data. J. Multivariate Anal., 27:24–39.

- ▶ Kernel: usually  $L(r) = e^{-r}$ , known as the von Mises kernel. In that case  $c_{h,q}(L) = e^{1/h^2} C_q(1/h^2)$ .
- ▶ Normalizing constant  $c_{h,q}(L)^{-1} = \lambda_q(L)h^q(1 + o(1))$  with

$$\lambda_q(L) = 2^{\frac{q}{2}-1}\omega_{q-1}\int_0^\infty L(r)r^{\frac{q}{2}-1}\,dr.$$

- "Second moment" of L:  $b_q(L) = \int_0^\infty L(r)r^{\frac{q}{2}} dr / \int_0^\infty L(r)r^{\frac{q}{2}-1} dr$ .
- Bandwidth: key parameter that controls the smoothness.

Eduardo García-Portugués









Eduardo García-Portugués



#### **Introduction**

Rotasymmetry KDE with directional data

#### Density estimation under rotasymmetry The rotasymmetrizer Rotasymmetric KDE

#### 3 Simulation study



- 11 / 26

Eduardo García-Portugués



## Density estimation under rotasymmetry

- Suppose that **X** is rotasymmetric with density *f*.
- ► Goal: estimate semiparametrically *f* under rotasymmetry.
- ► Estimation approaches, sorted from weaker to stronger assumptions:
  - Nonparametrically: KDE for directional data.
  - **2** Semiparametrically,  $\theta$  unknown.
  - **3** Semiparametrically,  $\theta$  known.
  - Parametrically: assuming a parametric family.

.

- Related references in the Euclidean setting:
  - F
- **Stute, W. and Werner, U. (1991).** Nonparametric estimation of elliptically contoured densities. *In G. Roussas (Ed.), Nonparametric Functional Estimation and Related Topics*, 173–190.

Liebscher, E. (2005). A semiparametric density estimator based on elliptical distributions. *J. Multivariate Anal.*, 92:205–225.

The first step is to build an operator that ensures rotasymmetry.





## The rotasymmetrizer

#### **Definition** (Rotasymmetrizer)

The **rotasymmetrizer** around  $\theta$ ,  $R_{\theta}$ , transforms a function  $f : \Omega_q \longrightarrow \mathbb{R}$  into

$$R_{\boldsymbol{\theta}}f(\mathbf{x}) = \frac{1}{\omega_{q-1}} \int_{\Omega_{q-1}} f(\mathbf{x}_{\boldsymbol{\theta},\boldsymbol{\xi}}) \, \omega_{q-1}(d\boldsymbol{\xi}),$$

with 
$$\mathbf{x}_{\boldsymbol{\theta},\boldsymbol{\xi}} = (\mathbf{x}^{T}\boldsymbol{\theta})\boldsymbol{\theta} + (1 - (\mathbf{x}^{T}\boldsymbol{\theta})^{2})^{\frac{1}{2}}\mathbf{B}_{\boldsymbol{\theta}}\boldsymbol{\xi}.$$

- For point x ∈ Ω<sub>q</sub>, the operator averages out the density along the points sharing the same colatitude (wrt θ).
- Intuitively: parallel redistribution of probability mass.





Figure: Input and output of  $R_{\theta}$  with  $\theta = (0, 0, 1)$ .





#### **Properties**

#### Proposition (Rotasymmetrizer properties)

Let be  $f, f_1, f_2 : \Omega_q \longrightarrow \mathbb{R}^+$  directional densities and  $\theta \in \Omega_q$ .

**1** Invariance from different matrices  $\mathbf{B}_{\theta}$ :

$$\int_{\Omega_{q-1}} f(\mathbf{x}_{\theta,\xi,1}) \, \omega_{q-1}(d\xi) = \int_{\Omega_{q-1}} f(\mathbf{x}_{\theta,\xi,2}) \, \omega_{q-1}(d\xi),$$

with  $\mathbf{x}_{\theta,\xi,k} = (\mathbf{x}^T \theta) \theta + (1 - (\mathbf{x}^T \theta)^2)^{\frac{1}{2}} \mathbf{B}_{\theta,k} \xi$ , k = 1, 2.

- **2** Linearity:  $R_{\theta}(\lambda_1 f_1 + \lambda_2 f_2)(\mathbf{x}) = \lambda_1 R_{\theta} f_1(\mathbf{x}) + \lambda_2 R_{\theta} f_2(\mathbf{x}).$
- **3 Density preservation**:  $R_{\theta}f$  is a density.
- 8 Rotasymmetry characterization:

 $R_{\theta}f = f \iff f \text{ is rotasymmetric around } \theta.$ 

Particular expression for the **vMF density**:  $R_{\theta}f_{\text{vMF}}(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\kappa}) = \frac{C_{q}(\boldsymbol{\kappa})\exp\left\{\boldsymbol{\kappa}\mathbf{x}^{\mathsf{T}}\boldsymbol{\theta}\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{\mu}\right\}}{\omega_{q-1}C_{q-1}\left(\boldsymbol{\kappa}\left[(1-(\mathbf{x}^{\mathsf{T}}\boldsymbol{\theta})^{2})(1-(\boldsymbol{\mu}^{\mathsf{T}}\boldsymbol{\theta})^{2})\right]^{\frac{1}{2}}\right)}.$ 



14 / 26

6



## **Rotasymmetric KDE**

#### **Definition** (Rotasymmetric KDE)

The **rotasymmetric KDE (RKDE)** is the application of the rotasymmetrizer to the usual KDE:

$$\hat{f}_{h,\theta}(\mathbf{x}) = R_{\theta} \hat{f}_{h}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} L_{h,\theta}(\mathbf{x}, \mathbf{X}_{i}),$$
with  $L_{h,\theta}(\mathbf{x}, \mathbf{X}_{i}) = \frac{c_{h,q}(L)}{\omega_{q-1}} \int_{\Omega_{q-1}} L\left(\frac{1 - \mathbf{x}_{\theta,\xi}^{T} \mathbf{X}_{i}}{h^{2}}\right) \omega_{q-1}(d\boldsymbol{\xi}).$ 

The rotasymmetric von Mises kernel has a closed expression:

$$L_{h,\theta}(\mathbf{x}, \mathbf{X}_i) = \frac{C_q(1/h^2) \exp\left\{\mathbf{x}^T \boldsymbol{\theta} \boldsymbol{\theta}^T \mathbf{X}_i / h^2\right\}}{\omega_{q-1} C_{q-1} \left(\left[(1 - (\mathbf{x}^T \boldsymbol{\theta})^2)(1 - (\mathbf{X}_i^T \boldsymbol{\theta})^2)\right]^{\frac{1}{2}} / h^2\right)}$$

• The order of the normalizing constant of the kernel is  $\mathcal{O}(h^{-1})$ .



- 15 / 26





Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with  $\theta = (\mathbf{0}_q, 1)$ . The kernels have the same bandwidth.











Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with  $\theta = (\mathbf{0}_q, 1)$ . The kernels have the same bandwidth.

Eduardo García-Portugués











Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with  $\theta = (\mathbf{0}_q, 1)$ . The kernels have the same bandwidth.



Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with  $\theta = (\mathbf{0}_q, 1)$ . The kernels have the same bandwidth.



- ► The kernels of the RKDE only depend on the projected sample  $T_i = \mathbf{X}_i^T \boldsymbol{\theta}, i = 1, ..., n$ , and the projected point  $t = \mathbf{x}^T \boldsymbol{\theta}$ .
- ► RKDE is equivalent to KDE on the projected sample in [-1,1] with bounded kernels adapted to capture the possible spikes of f\*.
- Boundary bias is  $\mathcal{O}(h^2)$  without any corrections.





- ► The kernels of the RKDE only depend on the projected sample  $T_i = \mathbf{X}_i^T \boldsymbol{\theta}, i = 1, ..., n$ , and the projected point  $t = \mathbf{x}^T \boldsymbol{\theta}$ .
- ► RKDE is equivalent to KDE on the projected sample in [-1,1] with bounded kernels adapted to capture the possible spikes of f\*.
- Boundary bias is  $\mathcal{O}(h^2)$  without any corrections.





- ► The kernels of the RKDE only depend on the projected sample  $T_i = \mathbf{X}_i^T \boldsymbol{\theta}, i = 1, ..., n$ , and the projected point  $t = \mathbf{x}^T \boldsymbol{\theta}$ .
- ► RKDE is equivalent to KDE on the projected sample in [-1,1] with bounded kernels adapted to capture the possible spikes of f\*.
- Boundary bias is  $\mathcal{O}(h^2)$  without any corrections.



Eduardo García-Portugués

Kernel density estimation with directional data under rotational symmetry



- ► The kernels of the RKDE only depend on the projected sample  $T_i = \mathbf{X}_i^T \boldsymbol{\theta}, i = 1, ..., n$ , and the projected point  $t = \mathbf{x}^T \boldsymbol{\theta}$ .
- ► RKDE is equivalent to KDE on the projected sample in [-1,1] with bounded kernels adapted to capture the possible spikes of f\*.
- Boundary bias is  $\mathcal{O}(h^2)$  without any corrections.





# Connections with KDE in [-1,1]

- ► The kernels of the RKDE only depend on the projected sample  $T_i = \mathbf{X}_i^T \boldsymbol{\theta}, i = 1, ..., n$ , and the projected point  $t = \mathbf{x}^T \boldsymbol{\theta}$ .
- ► RKDE is equivalent to KDE on the projected sample in [-1, 1] with bounded kernels adapted to capture the possible spikes of f\*.
- Boundary bias is  $\mathcal{O}(h^2)$  without any corrections.





#### ► Assumptions:

- A1 *f* is extended from  $\Omega_q$  to  $\mathbb{R}^{q+1} \setminus \{\mathbf{0}\}$  by  $f(\mathbf{x}) \equiv f(\mathbf{x}/||\mathbf{x}||)$ . *f* is twice continuously differentiable with Hessian  $\mathcal{H}f(\mathbf{x})$ .
- A2 *L* is a continuous and bounded function  $L : [0, \infty) \to [0, \infty)$  with exponential decay:  $L(r) \leq Me^{-\alpha r}$ ,  $M, \alpha > 0$ .
- **A3** The sequence  $h = h_n$  satisfies  $h \to 0$  and  $nh \to \infty$ .
- **A4** The sequence  $h = h_n$  satisfies  $h \to 0$  and  $nh^q \to \infty$ .
- A4 is required for consistency at  $\mathbf{x} = \pm \boldsymbol{\theta}$ . Of course, A4  $\implies$  A3.

**Proposition** (Bias,  $\theta$  known)

Under A1–A3 and uniformly in  $\mathbf{x} \in \Omega_q$ ,

$$\mathbb{E}\left[\hat{f}_{h,\theta}(\mathbf{x})\right] = R_{\theta}f(\mathbf{x}) + \frac{b_q(L)}{q} \operatorname{tr}\left[\mathcal{H}R_{\theta}f(\mathbf{x})\right]h^2 + o\left(h^2\right).$$

If rotasymmetry holds, then  $R_{\theta}f = f$  and the bias is KDE's one.



- 18 / 26



#### **Proposition** (Variance, $\theta$ known)

Under A1–A2, A3 if  $(\mathbf{x}^T \theta)^2 < 1$  and A4 otherwise,

$$\mathbb{V}\operatorname{ar}\left[\hat{f}_{h,\theta}(\mathbf{x})\right] = C_{\mathbf{x}^{T}\theta,q,L}(h)\frac{R_{\theta}f(\mathbf{x})}{n}(1+o(1)) - \frac{(R_{\theta}f(\mathbf{x}))^{2}}{n}$$

uniformly in  $\mathbf{x} \in \Omega_q$ , where

$$C_{\mathbf{x}^{T}\theta,q,L}(h) = \begin{cases} \frac{\lambda_{q}(L^{2})\lambda_{q}(L)^{-2}}{h^{q}}, & (\mathbf{x}^{T}\theta)^{2} = 1, q \ge 1, \\ \frac{\lambda_{1}(L^{2})\lambda_{1}(L)^{-2}}{2h}, & (\mathbf{x}^{T}\theta)^{2} < 1, q = 1, \\ \frac{\lambda_{q-1}(L)^{2}\lambda_{q}(L)^{-2}}{\omega_{q-1}(1 - (\mathbf{x}^{T}\theta)^{2})^{\frac{1}{2}}h}, & (\mathbf{x}^{T}\theta)^{2} < 1, q \ge 2. \end{cases}$$

• The variance increases when  $q \to \infty$  since  $\omega_{q-1} \to 0!$ 



19 / 26

Eduardo García-Portugués

# Spherical area surface



- The area of  $\Omega_q$  tends to zero, but not monotonically.
- Weird maximum at dimension q = 6.
- $[-1,1]^q$  touches  $\Omega_q$  in  $2^q$  points, yet its area tends to infinity.





## Asymptotic normality

**Corollary** (Pointwise asymptotic normality,  $\theta$  known)

Under A1–A2, A3 if  $(\mathbf{x}^T \theta)^2 < 1$  and A4 otherwise,

$$a_n\left(\hat{f}_{h, \boldsymbol{ heta}}(\mathbf{x}) - f(\mathbf{x})\right) \stackrel{d}{\longrightarrow} \mathcal{N}\left(R_{\boldsymbol{ heta}}f(\mathbf{x}) - f(\mathbf{x}), C_{\mathbf{x}^{T}\boldsymbol{ heta}, q, L}(1)\right),$$

where  $a_n = \sqrt{nh}$  if  $(\mathbf{x}^T \boldsymbol{\theta})^2 < 1$  and  $a_n = \sqrt{nh^q}$  otherwise.

| Concept          | KDE<br>(√/× rotasym.)                         | RKDE<br>(√ rotasy                          | m.) (× rotasym.)                                                           |
|------------------|-----------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------|
| Bias             | $\mathcal{O}\left(h^{2}\right)$               | $  \qquad \mathcal{O}(h^2)$                | $\mathcal{O}\left(R_{\theta}f(\mathbf{x})-f(\mathbf{x})\right)$            |
| Variance         | $\mathcal{O}\left((\mathit{nh^q})^{-1} ight)$ | <i>O</i> (( <i>nh</i> ) <sup>−</sup>       | $^{1} ight) \qquad \Big  \qquad \mathcal{O}\left((\textit{nh})^{-1} ight)$ |
| Optimal<br>AMISE | $\mathcal{O}(n^{-\frac{4}{4+q}})$             | $\mathcal{O}\left(n^{-\frac{4}{5}}\right)$ | $\mathcal{O}\left(\int (R_{\theta}f-f)^{2}\right)$                         |

Table: Summary of the KDE and RKDE key orders.

Eduardo García-Portugués

Kernel density estimation with directional data under rotational symmetry



## Properties with unknown $\theta$

#### Assumption:

A5  $\hat{\theta}$  is a  $\sqrt{n}$ -consistent estimator:  $\hat{\theta} - \theta = \mathcal{O}_{\mathbb{P}}(n^{-\frac{1}{2}}).$ 

#### Examples:

- If g is strictly monotone,  $\hat{\theta} = \frac{\sum_{i=1}^{n} \mathbf{x}_i}{\left|\left|\sum_{i=1}^{n} \mathbf{x}_i\right|\right|}$  satisfies A5.
- ► If g is symmetric wrt 0 and strictly monotone in [0, 1], then the first eigenvector of  $\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{T}$  satisfies A5.
- Bias and variance: under A1–A2, A3 or A4 and A5,

$$\mathbb{E}\left[\hat{f}_{h,\hat{\theta}}(\mathbf{x})\right] = R_{\theta}f(\mathbf{x}) + \frac{b_q(L)}{q} \operatorname{tr}\left[\mathcal{H}R_{\theta}f(\mathbf{x})\right]h^2 + o\left(h^2\right) + \mathcal{O}\left(n^{-\frac{1}{2}}\right),$$
  
$$\mathbb{V}\operatorname{ar}\left[\hat{f}_{h,\hat{\theta}}(\mathbf{x})\right] = C_{\mathbf{x}^{T}\theta,q,L}(h)\frac{R_{\theta}f(\mathbf{x})}{n}(1+o(1)) - \frac{(R_{\theta}f(\mathbf{x}))^2}{n}.$$

Asymptotic normality: under A1–A5,

$$a_n\left(\hat{f}_{h,\hat{\theta}}(\mathbf{x})-f(\mathbf{x})\right) \xrightarrow{d} \mathcal{N}\left(R_{\theta}f(\mathbf{x})-f(\mathbf{x}),C_{\mathbf{x}^{T}\theta,q,L}(1)\right).$$





#### Introduction

Rotasymmetry KDE with directional data

#### 2 Density estimation under rotasymmetry The rotasymmetrizer Rotasymmetric KDE

#### **3** Simulation study

23 / 26

Eduardo García-Portugués



## Simulation study

#### Goal:

Compare for a grid of bandwidths h the performance of the estimators.

#### Settings:

- Estimators: KDE, RKDE with  $\theta$  and  $\hat{\theta}$  (directional mean). All with von Mises kernel.
- Error measurement: log of the Mean Integrated Squared Error (MISE):

$$\log \mathrm{MISE} = \log \mathbb{E} \left[ \int_{\Omega_q} (\hat{f}(\mathbf{x}) - f(\mathbf{x}))^2 \, \omega_q(d\mathbf{x}) 
ight].$$

- ▶ Target density:  $vMF((\mathbf{0}_q, 1), 5)$ . Dimensions: q = 1, 2, 3, 4, 5, 6.
- ► Sample size: n = 100. Monte Carlo replicates: M = 1000.



# Comparison with KDE



Figure: Performance of the three kernel estimators with q = 1 (left) and q = 2 (right), with n = 100.

| Ratios optimal MISEs | q = 1 | q = 2 | q = 3 | <i>q</i> = 4 | q = 5 | <i>q</i> = 6 |  |
|----------------------|-------|-------|-------|--------------|-------|--------------|--|
| KDE/RKDE, $\theta$   | 1.796 | 2.999 | 4.065 | 5.643        | 5.871 | 8.019        |  |
| KDE/RKDE, $	heta$    | 1.289 | 2.014 | 2.537 | 3.035        | 3.207 | 3.467        |  |

Eduardo García-Portugués





Figure: Performance of the three kernel estimators with q = 3 (left) and q = 4 (right), with n = 100.

| Ratios optimal MISEs | q = 1 | q = 2 | q = 3 | <i>q</i> = 4 | q = 5 | <i>q</i> = 6 |  |
|----------------------|-------|-------|-------|--------------|-------|--------------|--|
| KDE/RKDE, $\theta$   | 1.796 | 2.999 | 4.065 | 5.643        | 5.871 | 8.019        |  |
| KDE/KKDE, Ø          | 1.209 | 2.014 | 2.557 | 5.055        | 5.207 | 5.407        |  |

Eduardo García-Portugués





Figure: Performance of the three kernel estimators with q = 5 (left) and q = 6 (right), with n = 100.

| Ratios optimal MISEs | q = 1 | q = 2 | <i>q</i> = 3 | q = 4 | q = 5 | <i>q</i> = 6 |  |
|----------------------|-------|-------|--------------|-------|-------|--------------|--|
| KDE/RKDE, $\theta$   | 1.796 | 2.999 | 4.065        | 5.643 | 5.871 | 8.019        |  |
| KDE/RKDE, $	heta$    | 1.289 | 2.014 | 2.537        | 3.035 | 3.207 | 3.467        |  |

Eduardo García-Portugués



We have seen that...

- The rotasymmetrizer enforces rotasymmetry naturally.
- ② The RKDE has the same bias as the KDE but lower variance.
- **③** The variance still depends on q and increases if  $q \to \infty$ .
- Improvements on the MISE are notable in practise.



# Appendix





Figure: Log-variances of the KDE and RKDE at **x** such that  $\mathbf{x}^T \boldsymbol{\theta} = 0$  (left) and  $\mathbf{x}^T \boldsymbol{\theta} = 0.5$  (right), for a grid of bandwidths *h* and dimension q = 1.





Figure: Log-variances of the KDE and RKDE at **x** such that  $\mathbf{x}^T \boldsymbol{\theta} = 0$  (left) and  $\mathbf{x}^T \boldsymbol{\theta} = 0.5$  (right), for a grid of bandwidths *h* and dimension q = 2.





Figure: Log-variances of the KDE and RKDE at **x** such that  $\mathbf{x}^T \boldsymbol{\theta} = 0$  (left) and  $\mathbf{x}^T \boldsymbol{\theta} = 0.5$  (right), for a grid of bandwidths *h* and dimension q = 10.





Figure: Log-variances of the KDE and RKDE at **x** such that  $\mathbf{x}^T \boldsymbol{\theta} = 0$  (left) and  $\mathbf{x}^T \boldsymbol{\theta} = 0.5$  (right), for a grid of bandwidths *h* and dimension q = 20.



## **Bandwidth selection**

- Plug-in rules are possible, but more complex than in the usual KDE.
- Cross-validation rules apply as expected:

$$\begin{split} h_{\rm CV} &= \arg\min_{h>0} \left[ \frac{2}{n} \sum_{i=1}^{n} \hat{f}_{h,\theta}^{-i}(\mathbf{X}_i) - \int_{\Omega_q} \hat{f}_{h,\theta}(\mathbf{x})^2 \, \omega_q(d\mathbf{x}) \right], \\ h_{\rm LCV} &= \arg\max_{h>0} \sum_{i=1}^{n} \log \hat{f}_{h,\theta}^{-i}(\mathbf{X}_i). \end{split}$$

• The integral is one dimensional:

$$\int_{\Omega_q} \hat{f}_{h,\theta}(\mathbf{x})^2 \, \omega_q(d\mathbf{x}) = \omega_{q-1} \int_{-1}^1 \left( \frac{1}{n} \sum_{i=1}^n L_h^*(t, T_i) \right)^2 (1-t^2)^{\frac{q}{2}-1} \, dt.$$

• If  $\theta$  is unknown, then we can opt for:

- **1** Plug-in a consistent estimate  $\hat{\theta}$  (sample mean if g is monotonic).
- 2 Joint optimization of the LCV loss, for example with

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta,h \end{pmatrix}_{ ext{LCV}} &= rg\max_{\substack{h>0\ heta\in\Omega_q}}\sum_{i=1}^n\log\hat{f}_{h, heta}^{-i}(\mathbf{X}_i). \end{aligned}$$

Eduardo García-Portugués





Figure: Distribution of the ISEs for the estimators KDE( $h_{LCV}$ ), RKDE( $\theta$ ,  $h_{LCV}$ ), RKDE( $\hat{\theta}$ ,  $h_{LCV}$ ) and RKDE(( $\theta$ , h)<sub>LCV</sub>).



## Hints on the estimation of $\theta$

The estimators for θ are based on the eigenvector of the outer matrix that has multiplicity one:

$$\mathbb{E}\left[\mathsf{X}\mathsf{X}^{\mathsf{T}}\right] = \left\{\int_{-1}^{1} t^{2} f^{*}(t) dt \times \theta \theta^{\mathsf{T}} + \frac{1}{q} \left(1 - \int_{-1}^{1} t^{2} f^{*}(t) dt\right) \times (\mathsf{I}_{q+1} - \theta \theta^{\mathsf{T}})\right\}$$

Problems if all the eigenvalues are similar!

New estimator based on the characterization

$$\{\mathbf{X}_i\}_{i=1}^n \text{ is rotasymmetric } \iff \left\{\frac{\mathbf{B}_{\theta}^{\mathsf{T}}\mathbf{X}_i}{\sqrt{1-(\mathbf{X}_i^{\mathsf{T}}\theta)^2}}\right\}_{i=1}^n \text{ is uniform in } \Omega_q.$$

The estimator minimizes discrepancy wrt uniformity, measured by an statistic T<sub>n</sub> (consistent against all alternatives!).

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}\in\Omega_q} T_n \left( \frac{\mathbf{B}_{\boldsymbol{\theta}}^T \mathbf{X}_1}{\sqrt{1 - (\mathbf{X}_1^T \boldsymbol{\theta})^2}}, \dots, \frac{\mathbf{B}_{\boldsymbol{\theta}}^T \mathbf{X}_n}{\sqrt{1 - (\mathbf{X}_n^T \boldsymbol{\theta})^2}} \right).$$

For example, Ajne's statistic:

$$T_n(\mathbf{Y}_1,\ldots,\mathbf{Y}_n)=\frac{n}{4}-\frac{1}{n\pi}\sum_{i\leq i}\cos^{-1}(\mathbf{Y}_i^T\mathbf{Y}_i).$$

Eduardo García-Portugués

**Applications in testing** 

- ► The RKDE can be employed for nonparametric testing:
  - **1** Test for rotational symmetry comparing KDE and RKDE:

$$\mathcal{T}_n = \int_{\Omega_q} (\hat{f}_{h,\hat{ heta}}(\mathbf{x}) - \hat{f}_h(\mathbf{x}))^2 \, \omega_q(d\mathbf{x}).$$



Goodness-of-fit test for parametric models under rotasymmetry, *i.e.* testing of  $H_0: f \in \mathcal{F}_{\Lambda} = \{f_{\lambda} : \lambda \in \Lambda\}$ :

$$R_n = \int_{\Omega_q} (\hat{f}_{h,\hat{ heta}}(\mathbf{x}) - L_h f_{\hat{\lambda}}(\mathbf{x}))^2 \, \omega_q(d\mathbf{x}).$$

Expected to be more powerful (under rotasymmetry) than:



- Boente, G., Rodríguez, D. and González-Manteiga, W. (2014). Goodness-of-fit test for directional data. *Scand. J. Stat.*, 41:259–275.
- Resampling strategy: using the tangent-normal decomposition.

