Kernel density estimation with directional data under rotational symmetry

Eduardo García-Portugués (egarcia@math.ku.dk)

Department of Mathematical Sciences and The Bioinformatics Centre University of Copenhagen

Joint work with C. Ley and T. Verdebout (Université Libre de Bruxelles)

EYSM, Prague, 31st August 2015

Introduction

Rotasymmetry KDE with directional data

Density estimation under rotasymmetry

The rotasymmetrizer Rotasymmetric KDE

3 Simulation study

Introduction

Rotasymmetry KDE with directional data

Density estimation under rotasymmetry The rotasymmetrizer Rotasymmetric KDE

3 Simulation study

Eduardo García-Portugués

$$\Omega_q = \left\{ \mathbf{x} \in \mathbb{R}^{q+1} : ||\mathbf{x}|| = 1
ight\}.$$

- Particular cases are the circle (q = 1) and the sphere (q = 2).
- Statistical methods must account for the special nature of directional data.
- Present in different applied fields: corner stone in protein modelling.

Figure: Circular von Mises density.

$$\Omega_q = \left\{ \mathbf{x} \in \mathbb{R}^{q+1} : ||\mathbf{x}|| = 1
ight\}.$$

- Particular cases are the circle (q = 1) and the sphere (q = 2).
- Statistical methods must account for the special nature of directional data.
- Present in different applied fields: corner stone in protein modelling.

Figure: Spherical von Mises density.

$$\Omega_q = \left\{ \mathbf{x} \in \mathbb{R}^{q+1} : ||\mathbf{x}|| = 1
ight\}.$$

- Particular cases are the circle (q = 1) and the sphere (q = 2).
- Statistical methods must account for the special nature of directional data.
- Present in different applied fields: corner stone in protein modelling.

$$\Omega_q = \left\{ \mathbf{x} \in \mathbb{R}^{q+1} : ||\mathbf{x}|| = 1
ight\}.$$

- Particular cases are the circle (q = 1) and the sphere (q = 2).
- Statistical methods must account for the special nature of directional data.
- Present in different applied fields: corner stone in protein modelling.

Von Mises-Fisher distribution

The most well known directional distribution is the von Mises-Fisher (vMF), with density:

$$f_{\rm vMF}(\mathbf{x};\boldsymbol{\mu},\kappa) = C_q(\kappa) \exp\left\{\kappa \mathbf{x}^{\mathsf{T}} \boldsymbol{\mu}\right\}, \quad C_q(\kappa) = \frac{\kappa^{\frac{q-1}{2}}}{(2\pi)^{\frac{q+1}{2}} \mathcal{I}_{\frac{q-1}{2}}(\kappa)}$$

parametrized by a mean $\mu \in \Omega_q$ and a concentration $\kappa \geq 0$.

Density wrt the Lebesgue measure ω_q in Ω_q. ω_q denotes also the area surface of Ω_q:

$$\omega_q \equiv \omega_q(\Omega_q) = 2\pi^{rac{q+1}{2}}/\Gamma\Big(rac{q+1}{2}\Big).$$

• Gaussian analogue (isotropic):

1 Same MLE characterization property.
2 If
$$\mathbf{X} \sim \mathcal{N}_{q+1}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_{q+1})$$
, with $\boldsymbol{\mu} \in \mathbb{R}^{q+1} \setminus \{\mathbf{0}\}$ and $\sigma^2 > 0$, then

$$\mathbf{Y} = \left(\mathbf{X} \mid ||\mathbf{X}|| = 1\right) \sim vM\left(\frac{\mu}{||\boldsymbol{\mu}||}, \frac{||\boldsymbol{\mu}||}{\sigma^2}\right).$$

Rotasymmetry I

- A recurrent assumption about a directional rv X is rotational symmetry (or rotasymmetry) about some direction θ ∈ Ω_q.
- In the circular case, rotasymmetry is reflective symmetry, a feature appearing in most of the distributions.
- In the high-dimensional situation, rotasymmetry is behind many celebrated distributions such as the vMF.

Figure: Rotasymmetry in the circular and spherical cases.

Eduardo García-Portugués

- It is a building block in numerous contributions: inference, simulation, descriptive statistics.
 - - Saw, J. G. (1978). A family of distributions on the *m*-sphere and some hypothesis tests. *Biometrika*, 65:69–73.

- Bingham, C. and Mardia, K. V. (1978). A small circle distribution on the sphere *Biometrika*, 65:379–389.
- Wood, A. T. A (1994). Simulation of the von Mises Fisher distribution. *Commun. Stat. Simulat.*, 23:157–164.
- Ley, C., Swan, Y., Thiam, B. and Verdebout, T. (2013). Optimal *R*-estimation of a spherical location. *Statist. Sinica*, 23:305–332.
- F
- Ley, C., Sabbah, C. and Verdebout, T. (2014). A new concept of quantiles for directional data and the angular Mahalanobis depth. *Electron. J. Stat.*, 8:795–816.

Rotasymmetry III

Proposition (Rotasymmetry characterization)

Let X a directional rv with density f. These statements are equivalent:

- **3** $\mathbf{X} \stackrel{d}{=} \mathbf{O}\mathbf{X}$, where $\mathbf{O} = \boldsymbol{\theta}\boldsymbol{\theta}^{T} + \sum_{i=1}^{q} \mathbf{b}_{i}\mathbf{b}_{i}^{T}$ is a rotation matrix on \mathbb{R}^{q+1} that fixes $\boldsymbol{\theta} \in \Omega_{q}$.
- **2** $f(\mathbf{x}) = g(\mathbf{x}^T \boldsymbol{\theta}), \forall \mathbf{x} \in \Omega_q, \text{ where } g: [-1,1] \longrightarrow \mathbb{R}^+ \text{ is a link}$ such that $f^*(t) = \omega_{q-1}g(t)(1-t^2)^{\frac{q}{2}-1}$ is a density in [-1,1].
- Rotasymmetry is related with the tangent-normal decomposition:

$$\mathbf{x} = t \boldsymbol{ heta} + (1-t^2)^{rac{1}{2}} \mathbf{B}_{\boldsymbol{ heta}} \boldsymbol{\xi}, \quad \omega_q(d\mathbf{x}) = (1-t^2)^{rac{q}{2}-1} \, dt \, \omega_{q-1}(d\boldsymbol{\xi}),$$

with $t = \mathbf{x}^T \boldsymbol{\theta} \in [-1, 1]$, $\boldsymbol{\xi} \in \Omega_{q-1}$ and $\mathbf{B}_{\boldsymbol{\theta}} = (\mathbf{b}_1, \dots, \mathbf{b}_q)_{(q+1) \times q}$ such that $\mathbf{B}_{\boldsymbol{\theta}}^T \mathbf{B}_{\boldsymbol{\theta}} = \mathbf{I}_q$ and $\mathbf{B}_{\boldsymbol{\theta}} \mathbf{B}_{\boldsymbol{\theta}}^T = \mathbf{I}_{q+1} - \boldsymbol{\theta} \boldsymbol{\theta}^T$.

No monotonicity required in g, axial variables are covered as well.

8 / 26

Eduardo García-Portugués

► For a sample X₁,..., X_n ~ f, the Kernel Density Estimator (KDE) for directional data is

$$\hat{f}_h(\mathbf{x}) = \frac{c_{h,q}(L)}{n} \sum_{i=1}^n L\left(\frac{1-\mathbf{x}^T \mathbf{X}_i}{h^2}\right) = \frac{1}{n} \sum_{i=1}^n L_h\left(\mathbf{x}, \mathbf{X}_i\right), \quad \mathbf{x} \in \Omega_q.$$

Bai, Z. D., Rao, C. R. and Zhao, L. C. (1988). Kernel estimators of density function of directional data. J. Multivariate Anal., 27:24–39.

- ▶ Kernel: usually $L(r) = e^{-r}$, known as the von Mises kernel. In that case $c_{h,q}(L) = e^{1/h^2} C_q(1/h^2)$.
- ▶ Normalizing constant $c_{h,q}(L)^{-1} = \lambda_q(L)h^q(1 + o(1))$ with

$$\lambda_q(L) = 2^{\frac{q}{2}-1}\omega_{q-1}\int_0^\infty L(r)r^{\frac{q}{2}-1}\,dr.$$

- "Second moment" of L: $b_q(L) = \int_0^\infty L(r)r^{\frac{q}{2}} dr / \int_0^\infty L(r)r^{\frac{q}{2}-1} dr$.
- Bandwidth: key parameter that controls the smoothness.

Eduardo García-Portugués

Eduardo García-Portugués

Eduardo García-Portugués

Eduardo García-Portugués

Eduardo García-Portugués

Eduardo García-Portugués

Introduction

Rotasymmetry KDE with directional data

Density estimation under rotasymmetry The rotasymmetrizer Rotasymmetric KDE

3 Simulation study

- 11 / 26

Eduardo García-Portugués

Density estimation under rotasymmetry

- Suppose that **X** is rotasymmetric with density *f*.
- ► Goal: estimate semiparametrically *f* under rotasymmetry.
- ► Estimation approaches, sorted from weaker to stronger assumptions:
 - Nonparametrically: KDE for directional data.
 - **2** Semiparametrically, θ unknown.
 - **3** Semiparametrically, θ known.
 - Parametrically: assuming a parametric family.

.

- Related references in the Euclidean setting:
 - F
- **Stute, W. and Werner, U. (1991).** Nonparametric estimation of elliptically contoured densities. *In G. Roussas (Ed.), Nonparametric Functional Estimation and Related Topics*, 173–190.

Liebscher, E. (2005). A semiparametric density estimator based on elliptical distributions. *J. Multivariate Anal.*, 92:205–225.

The first step is to build an operator that ensures rotasymmetry.

The rotasymmetrizer

Definition (Rotasymmetrizer)

The **rotasymmetrizer** around θ , R_{θ} , transforms a function $f : \Omega_q \longrightarrow \mathbb{R}$ into

$$R_{\boldsymbol{\theta}}f(\mathbf{x}) = \frac{1}{\omega_{q-1}} \int_{\Omega_{q-1}} f(\mathbf{x}_{\boldsymbol{\theta},\boldsymbol{\xi}}) \, \omega_{q-1}(d\boldsymbol{\xi}),$$

with
$$\mathbf{x}_{\boldsymbol{\theta},\boldsymbol{\xi}} = (\mathbf{x}^{T}\boldsymbol{\theta})\boldsymbol{\theta} + (1 - (\mathbf{x}^{T}\boldsymbol{\theta})^{2})^{\frac{1}{2}}\mathbf{B}_{\boldsymbol{\theta}}\boldsymbol{\xi}.$$

- For point x ∈ Ω_q, the operator averages out the density along the points sharing the same colatitude (wrt θ).
- Intuitively: parallel redistribution of probability mass.

Figure: Input and output of R_{θ} with $\theta = (0, 0, 1)$.

Properties

Proposition (Rotasymmetrizer properties)

Let be $f, f_1, f_2 : \Omega_q \longrightarrow \mathbb{R}^+$ directional densities and $\theta \in \Omega_q$.

1 Invariance from different matrices \mathbf{B}_{θ} :

$$\int_{\Omega_{q-1}} f(\mathbf{x}_{\theta,\xi,1}) \, \omega_{q-1}(d\xi) = \int_{\Omega_{q-1}} f(\mathbf{x}_{\theta,\xi,2}) \, \omega_{q-1}(d\xi),$$

with $\mathbf{x}_{\theta,\xi,k} = (\mathbf{x}^T \theta) \theta + (1 - (\mathbf{x}^T \theta)^2)^{\frac{1}{2}} \mathbf{B}_{\theta,k} \xi$, k = 1, 2.

- **2** Linearity: $R_{\theta}(\lambda_1 f_1 + \lambda_2 f_2)(\mathbf{x}) = \lambda_1 R_{\theta} f_1(\mathbf{x}) + \lambda_2 R_{\theta} f_2(\mathbf{x}).$
- **3 Density preservation**: $R_{\theta}f$ is a density.
- 8 Rotasymmetry characterization:

 $R_{\theta}f = f \iff f \text{ is rotasymmetric around } \theta.$

Particular expression for the **vMF density**: $R_{\theta}f_{\text{vMF}}(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\kappa}) = \frac{C_{q}(\boldsymbol{\kappa})\exp\left\{\boldsymbol{\kappa}\mathbf{x}^{\mathsf{T}}\boldsymbol{\theta}\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{\mu}\right\}}{\omega_{q-1}C_{q-1}\left(\boldsymbol{\kappa}\left[(1-(\mathbf{x}^{\mathsf{T}}\boldsymbol{\theta})^{2})(1-(\boldsymbol{\mu}^{\mathsf{T}}\boldsymbol{\theta})^{2})\right]^{\frac{1}{2}}\right)}.$

14 / 26

6

Rotasymmetric KDE

Definition (Rotasymmetric KDE)

The **rotasymmetric KDE (RKDE)** is the application of the rotasymmetrizer to the usual KDE:

$$\hat{f}_{h,\theta}(\mathbf{x}) = R_{\theta} \hat{f}_{h}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} L_{h,\theta}(\mathbf{x}, \mathbf{X}_{i}),$$
with $L_{h,\theta}(\mathbf{x}, \mathbf{X}_{i}) = \frac{c_{h,q}(L)}{\omega_{q-1}} \int_{\Omega_{q-1}} L\left(\frac{1 - \mathbf{x}_{\theta,\xi}^{T} \mathbf{X}_{i}}{h^{2}}\right) \omega_{q-1}(d\boldsymbol{\xi}).$

The rotasymmetric von Mises kernel has a closed expression:

$$L_{h,\theta}(\mathbf{x}, \mathbf{X}_i) = \frac{C_q(1/h^2) \exp\left\{\mathbf{x}^T \boldsymbol{\theta} \boldsymbol{\theta}^T \mathbf{X}_i / h^2\right\}}{\omega_{q-1} C_{q-1} \left(\left[(1 - (\mathbf{x}^T \boldsymbol{\theta})^2)(1 - (\mathbf{X}_i^T \boldsymbol{\theta})^2)\right]^{\frac{1}{2}} / h^2\right)}$$

• The order of the normalizing constant of the kernel is $\mathcal{O}(h^{-1})$.

- 15 / 26

Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with $\theta = (\mathbf{0}_q, 1)$. The kernels have the same bandwidth.

Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with $\theta = (\mathbf{0}_q, 1)$. The kernels have the same bandwidth.

Eduardo García-Portugués

Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with $\theta = (\mathbf{0}_q, 1)$. The kernels have the same bandwidth.

Figure: Kernels for the KDE (upper row) and their RKDE counterparts (lower), with $\theta = (\mathbf{0}_q, 1)$. The kernels have the same bandwidth.

- ► The kernels of the RKDE only depend on the projected sample $T_i = \mathbf{X}_i^T \boldsymbol{\theta}, i = 1, ..., n$, and the projected point $t = \mathbf{x}^T \boldsymbol{\theta}$.
- ► RKDE is equivalent to KDE on the projected sample in [-1,1] with bounded kernels adapted to capture the possible spikes of f*.
- Boundary bias is $\mathcal{O}(h^2)$ without any corrections.

- ► The kernels of the RKDE only depend on the projected sample $T_i = \mathbf{X}_i^T \boldsymbol{\theta}, i = 1, ..., n$, and the projected point $t = \mathbf{x}^T \boldsymbol{\theta}$.
- ► RKDE is equivalent to KDE on the projected sample in [-1,1] with bounded kernels adapted to capture the possible spikes of f*.
- Boundary bias is $\mathcal{O}(h^2)$ without any corrections.

- ► The kernels of the RKDE only depend on the projected sample $T_i = \mathbf{X}_i^T \boldsymbol{\theta}, i = 1, ..., n$, and the projected point $t = \mathbf{x}^T \boldsymbol{\theta}$.
- ► RKDE is equivalent to KDE on the projected sample in [-1,1] with bounded kernels adapted to capture the possible spikes of f*.
- Boundary bias is $\mathcal{O}(h^2)$ without any corrections.

Eduardo García-Portugués

Kernel density estimation with directional data under rotational symmetry

- ► The kernels of the RKDE only depend on the projected sample $T_i = \mathbf{X}_i^T \boldsymbol{\theta}, i = 1, ..., n$, and the projected point $t = \mathbf{x}^T \boldsymbol{\theta}$.
- ► RKDE is equivalent to KDE on the projected sample in [-1,1] with bounded kernels adapted to capture the possible spikes of f*.
- Boundary bias is $\mathcal{O}(h^2)$ without any corrections.

Connections with KDE in [-1,1]

- ► The kernels of the RKDE only depend on the projected sample $T_i = \mathbf{X}_i^T \boldsymbol{\theta}, i = 1, ..., n$, and the projected point $t = \mathbf{x}^T \boldsymbol{\theta}$.
- ► RKDE is equivalent to KDE on the projected sample in [-1, 1] with bounded kernels adapted to capture the possible spikes of f*.
- Boundary bias is $\mathcal{O}(h^2)$ without any corrections.

► Assumptions:

- A1 *f* is extended from Ω_q to $\mathbb{R}^{q+1} \setminus \{\mathbf{0}\}$ by $f(\mathbf{x}) \equiv f(\mathbf{x}/||\mathbf{x}||)$. *f* is twice continuously differentiable with Hessian $\mathcal{H}f(\mathbf{x})$.
- A2 *L* is a continuous and bounded function $L : [0, \infty) \to [0, \infty)$ with exponential decay: $L(r) \leq Me^{-\alpha r}$, $M, \alpha > 0$.
- **A3** The sequence $h = h_n$ satisfies $h \to 0$ and $nh \to \infty$.
- **A4** The sequence $h = h_n$ satisfies $h \to 0$ and $nh^q \to \infty$.
- A4 is required for consistency at $\mathbf{x} = \pm \boldsymbol{\theta}$. Of course, A4 \implies A3.

Proposition (Bias, θ known)

Under A1–A3 and uniformly in $\mathbf{x} \in \Omega_q$,

$$\mathbb{E}\left[\hat{f}_{h,\theta}(\mathbf{x})\right] = R_{\theta}f(\mathbf{x}) + \frac{b_q(L)}{q} \operatorname{tr}\left[\mathcal{H}R_{\theta}f(\mathbf{x})\right]h^2 + o\left(h^2\right).$$

If rotasymmetry holds, then $R_{\theta}f = f$ and the bias is KDE's one.

- 18 / 26

Proposition (Variance, θ known)

Under A1–A2, A3 if $(\mathbf{x}^T \theta)^2 < 1$ and A4 otherwise,

$$\mathbb{V}\operatorname{ar}\left[\hat{f}_{h,\theta}(\mathbf{x})\right] = C_{\mathbf{x}^{T}\theta,q,L}(h)\frac{R_{\theta}f(\mathbf{x})}{n}(1+o(1)) - \frac{(R_{\theta}f(\mathbf{x}))^{2}}{n}$$

uniformly in $\mathbf{x} \in \Omega_q$, where

$$C_{\mathbf{x}^{T}\theta,q,L}(h) = \begin{cases} \frac{\lambda_{q}(L^{2})\lambda_{q}(L)^{-2}}{h^{q}}, & (\mathbf{x}^{T}\theta)^{2} = 1, q \ge 1, \\ \frac{\lambda_{1}(L^{2})\lambda_{1}(L)^{-2}}{2h}, & (\mathbf{x}^{T}\theta)^{2} < 1, q = 1, \\ \frac{\lambda_{q-1}(L)^{2}\lambda_{q}(L)^{-2}}{\omega_{q-1}(1 - (\mathbf{x}^{T}\theta)^{2})^{\frac{1}{2}}h}, & (\mathbf{x}^{T}\theta)^{2} < 1, q \ge 2. \end{cases}$$

• The variance increases when $q \to \infty$ since $\omega_{q-1} \to 0!$

19 / 26

Eduardo García-Portugués

Spherical area surface

- The area of Ω_q tends to zero, but not monotonically.
- Weird maximum at dimension q = 6.
- $[-1,1]^q$ touches Ω_q in 2^q points, yet its area tends to infinity.

Asymptotic normality

Corollary (Pointwise asymptotic normality, θ known)

Under A1–A2, A3 if $(\mathbf{x}^T \theta)^2 < 1$ and A4 otherwise,

$$a_n\left(\hat{f}_{h, \boldsymbol{ heta}}(\mathbf{x}) - f(\mathbf{x})\right) \stackrel{d}{\longrightarrow} \mathcal{N}\left(R_{\boldsymbol{ heta}}f(\mathbf{x}) - f(\mathbf{x}), C_{\mathbf{x}^{T}\boldsymbol{ heta}, q, L}(1)\right),$$

where $a_n = \sqrt{nh}$ if $(\mathbf{x}^T \boldsymbol{\theta})^2 < 1$ and $a_n = \sqrt{nh^q}$ otherwise.

Concept	KDE (√/× rotasym.)	RKDE (√ rotasy	m.) (× rotasym.)
Bias	$\mathcal{O}\left(h^{2}\right)$	$ \qquad \mathcal{O}(h^2)$	$\mathcal{O}\left(R_{\theta}f(\mathbf{x})-f(\mathbf{x})\right)$
Variance	$\mathcal{O}\left((\mathit{nh^q})^{-1} ight)$	<i>O</i> ((<i>nh</i>) [−]	$^{1} ight) \qquad \Big \qquad \mathcal{O}\left((\textit{nh})^{-1} ight)$
Optimal AMISE	$\mathcal{O}(n^{-\frac{4}{4+q}})$	$\mathcal{O}\left(n^{-\frac{4}{5}}\right)$	$\mathcal{O}\left(\int (R_{\theta}f-f)^{2}\right)$

Table: Summary of the KDE and RKDE key orders.

Eduardo García-Portugués

Kernel density estimation with directional data under rotational symmetry

Properties with unknown θ

Assumption:

A5 $\hat{\theta}$ is a \sqrt{n} -consistent estimator: $\hat{\theta} - \theta = \mathcal{O}_{\mathbb{P}}(n^{-\frac{1}{2}}).$

Examples:

- If g is strictly monotone, $\hat{\theta} = \frac{\sum_{i=1}^{n} \mathbf{x}_i}{\left|\left|\sum_{i=1}^{n} \mathbf{x}_i\right|\right|}$ satisfies A5.
- ► If g is symmetric wrt 0 and strictly monotone in [0, 1], then the first eigenvector of $\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{T}$ satisfies A5.
- Bias and variance: under A1–A2, A3 or A4 and A5,

$$\mathbb{E}\left[\hat{f}_{h,\hat{\theta}}(\mathbf{x})\right] = R_{\theta}f(\mathbf{x}) + \frac{b_q(L)}{q} \operatorname{tr}\left[\mathcal{H}R_{\theta}f(\mathbf{x})\right]h^2 + o\left(h^2\right) + \mathcal{O}\left(n^{-\frac{1}{2}}\right),$$

$$\mathbb{V}\operatorname{ar}\left[\hat{f}_{h,\hat{\theta}}(\mathbf{x})\right] = C_{\mathbf{x}^{T}\theta,q,L}(h)\frac{R_{\theta}f(\mathbf{x})}{n}(1+o(1)) - \frac{(R_{\theta}f(\mathbf{x}))^2}{n}.$$

Asymptotic normality: under A1–A5,

$$a_n\left(\hat{f}_{h,\hat{\theta}}(\mathbf{x})-f(\mathbf{x})\right) \xrightarrow{d} \mathcal{N}\left(R_{\theta}f(\mathbf{x})-f(\mathbf{x}),C_{\mathbf{x}^{T}\theta,q,L}(1)\right).$$

Introduction

Rotasymmetry KDE with directional data

2 Density estimation under rotasymmetry The rotasymmetrizer Rotasymmetric KDE

3 Simulation study

23 / 26

Eduardo García-Portugués

Simulation study

Goal:

Compare for a grid of bandwidths h the performance of the estimators.

Settings:

- Estimators: KDE, RKDE with θ and $\hat{\theta}$ (directional mean). All with von Mises kernel.
- Error measurement: log of the Mean Integrated Squared Error (MISE):

$$\log \mathrm{MISE} = \log \mathbb{E} \left[\int_{\Omega_q} (\hat{f}(\mathbf{x}) - f(\mathbf{x}))^2 \, \omega_q(d\mathbf{x})
ight].$$

- ▶ Target density: $vMF((\mathbf{0}_q, 1), 5)$. Dimensions: q = 1, 2, 3, 4, 5, 6.
- ► Sample size: n = 100. Monte Carlo replicates: M = 1000.

Comparison with KDE

Figure: Performance of the three kernel estimators with q = 1 (left) and q = 2 (right), with n = 100.

Ratios optimal MISEs	q = 1	q = 2	q = 3	<i>q</i> = 4	q = 5	<i>q</i> = 6	
KDE/RKDE, θ	1.796	2.999	4.065	5.643	5.871	8.019	
KDE/RKDE, $ heta$	1.289	2.014	2.537	3.035	3.207	3.467	

Eduardo García-Portugués

Figure: Performance of the three kernel estimators with q = 3 (left) and q = 4 (right), with n = 100.

Ratios optimal MISEs	q = 1	q = 2	q = 3	<i>q</i> = 4	q = 5	<i>q</i> = 6	
KDE/RKDE, θ	1.796	2.999	4.065	5.643	5.871	8.019	
KDE/KKDE, Ø	1.209	2.014	2.557	5.055	5.207	5.407	

Eduardo García-Portugués

Figure: Performance of the three kernel estimators with q = 5 (left) and q = 6 (right), with n = 100.

Ratios optimal MISEs	q = 1	q = 2	<i>q</i> = 3	q = 4	q = 5	<i>q</i> = 6	
KDE/RKDE, θ	1.796	2.999	4.065	5.643	5.871	8.019	
KDE/RKDE, $ heta$	1.289	2.014	2.537	3.035	3.207	3.467	

Eduardo García-Portugués

We have seen that...

- The rotasymmetrizer enforces rotasymmetry naturally.
- ② The RKDE has the same bias as the KDE but lower variance.
- **③** The variance still depends on q and increases if $q \to \infty$.
- Improvements on the MISE are notable in practise.

Appendix

Figure: Log-variances of the KDE and RKDE at **x** such that $\mathbf{x}^T \boldsymbol{\theta} = 0$ (left) and $\mathbf{x}^T \boldsymbol{\theta} = 0.5$ (right), for a grid of bandwidths *h* and dimension q = 1.

Figure: Log-variances of the KDE and RKDE at **x** such that $\mathbf{x}^T \boldsymbol{\theta} = 0$ (left) and $\mathbf{x}^T \boldsymbol{\theta} = 0.5$ (right), for a grid of bandwidths *h* and dimension q = 2.

Figure: Log-variances of the KDE and RKDE at **x** such that $\mathbf{x}^T \boldsymbol{\theta} = 0$ (left) and $\mathbf{x}^T \boldsymbol{\theta} = 0.5$ (right), for a grid of bandwidths *h* and dimension q = 10.

Figure: Log-variances of the KDE and RKDE at **x** such that $\mathbf{x}^T \boldsymbol{\theta} = 0$ (left) and $\mathbf{x}^T \boldsymbol{\theta} = 0.5$ (right), for a grid of bandwidths *h* and dimension q = 20.

Bandwidth selection

- Plug-in rules are possible, but more complex than in the usual KDE.
- Cross-validation rules apply as expected:

$$\begin{split} h_{\rm CV} &= \arg\min_{h>0} \left[\frac{2}{n} \sum_{i=1}^{n} \hat{f}_{h,\theta}^{-i}(\mathbf{X}_i) - \int_{\Omega_q} \hat{f}_{h,\theta}(\mathbf{x})^2 \, \omega_q(d\mathbf{x}) \right], \\ h_{\rm LCV} &= \arg\max_{h>0} \sum_{i=1}^{n} \log \hat{f}_{h,\theta}^{-i}(\mathbf{X}_i). \end{split}$$

• The integral is one dimensional:

$$\int_{\Omega_q} \hat{f}_{h,\theta}(\mathbf{x})^2 \, \omega_q(d\mathbf{x}) = \omega_{q-1} \int_{-1}^1 \left(\frac{1}{n} \sum_{i=1}^n L_h^*(t, T_i) \right)^2 (1-t^2)^{\frac{q}{2}-1} \, dt.$$

• If θ is unknown, then we can opt for:

- **1** Plug-in a consistent estimate $\hat{\theta}$ (sample mean if g is monotonic).
- 2 Joint optimization of the LCV loss, for example with

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta,h \end{pmatrix}_{ ext{LCV}} &= rg\max_{\substack{h>0\ heta\in\Omega_q}}\sum_{i=1}^n\log\hat{f}_{h, heta}^{-i}(\mathbf{X}_i). \end{aligned}$$

Eduardo García-Portugués

Figure: Distribution of the ISEs for the estimators KDE(h_{LCV}), RKDE(θ , h_{LCV}), RKDE($\hat{\theta}$, h_{LCV}) and RKDE((θ , h)_{LCV}).

Hints on the estimation of θ

The estimators for θ are based on the eigenvector of the outer matrix that has multiplicity one:

$$\mathbb{E}\left[\mathsf{X}\mathsf{X}^{\mathsf{T}}\right] = \left\{\int_{-1}^{1} t^{2} f^{*}(t) dt \times \theta \theta^{\mathsf{T}} + \frac{1}{q} \left(1 - \int_{-1}^{1} t^{2} f^{*}(t) dt\right) \times (\mathsf{I}_{q+1} - \theta \theta^{\mathsf{T}})\right\}$$

Problems if all the eigenvalues are similar!

New estimator based on the characterization

$$\{\mathbf{X}_i\}_{i=1}^n \text{ is rotasymmetric } \iff \left\{\frac{\mathbf{B}_{\theta}^{\mathsf{T}}\mathbf{X}_i}{\sqrt{1-(\mathbf{X}_i^{\mathsf{T}}\theta)^2}}\right\}_{i=1}^n \text{ is uniform in } \Omega_q.$$

The estimator minimizes discrepancy wrt uniformity, measured by an statistic T_n (consistent against all alternatives!).

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}\in\Omega_q} T_n \left(\frac{\mathbf{B}_{\boldsymbol{\theta}}^T \mathbf{X}_1}{\sqrt{1 - (\mathbf{X}_1^T \boldsymbol{\theta})^2}}, \dots, \frac{\mathbf{B}_{\boldsymbol{\theta}}^T \mathbf{X}_n}{\sqrt{1 - (\mathbf{X}_n^T \boldsymbol{\theta})^2}} \right).$$

For example, Ajne's statistic:

$$T_n(\mathbf{Y}_1,\ldots,\mathbf{Y}_n)=\frac{n}{4}-\frac{1}{n\pi}\sum_{i\leq i}\cos^{-1}(\mathbf{Y}_i^T\mathbf{Y}_i).$$

Eduardo García-Portugués

Applications in testing

- ► The RKDE can be employed for nonparametric testing:
 - **1** Test for rotational symmetry comparing KDE and RKDE:

$$\mathcal{T}_n = \int_{\Omega_q} (\hat{f}_{h,\hat{ heta}}(\mathbf{x}) - \hat{f}_h(\mathbf{x}))^2 \, \omega_q(d\mathbf{x}).$$

Goodness-of-fit test for parametric models under rotasymmetry, *i.e.* testing of $H_0: f \in \mathcal{F}_{\Lambda} = \{f_{\lambda} : \lambda \in \Lambda\}$:

$$R_n = \int_{\Omega_q} (\hat{f}_{h,\hat{ heta}}(\mathbf{x}) - L_h f_{\hat{\lambda}}(\mathbf{x}))^2 \, \omega_q(d\mathbf{x}).$$

Expected to be more powerful (under rotasymmetry) than:

- Boente, G., Rodríguez, D. and González-Manteiga, W. (2014). Goodness-of-fit test for directional data. *Scand. J. Stat.*, 41:259–275.
- Resampling strategy: using the tangent-normal decomposition.

