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Introduction Definitions Estimation Computational issues Examples

General statement of the problem

Precise meaning to the notion of “central core” or “central part” or “median” of a set?
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General statement of the problem

Precise meaning to the notion of “central core” or “central part” or “median” of a set?

I Different definitions have been proposed. The most popular one is perhaps the

medial axis of a set. Other related notions are the skeleton and the cut locus.

I We are concerned with a modified version of the medial axis, called 𝜆-medial axis,

introduced in Chazal and Lieutier (2005) to deal with the well-known problem of

instability in the medial axis.
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Introduction Definitions Estimation Computational issues Examples

Medial axis

I Let C be a bounded set in Rd with non-empty interior such that C = int(C).

I For any x ∈ C , let us denote by Γ(x) the set of boundary points closest to x ,

Γ(x) = {y ∈ 𝜕C : d(x , y) = d(x , 𝜕C)},

where d(x , y) = ‖x − y‖ denotes the Euclidean distance between x and y in Rd

and also for a set A ⊂ R
d , d(x ,A) = inf{d(x , y) : y ∈ A}.

x

x
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Introduction Definitions Estimation Computational issues Examples

Medial axis

Medial axis
The medial axis of C , ℳ(C), is the set of points x of C , that have at least two

closest boundary points, that is, ℳ(C) = {x ∈ C : |Γ(x)| ≥ 2} where |E | denotes

the cardinal of E .

x
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Introduction Definitions Estimation Computational issues Examples

𝜆-medial axis

I A major problem in the practical use of the medial axisℳ(C) lies in its instability

with respect to slight perturbations in the boundary 𝜕C
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Introduction Definitions Estimation Computational issues Examples

𝜆-medial axis

𝜆-medial axis [Chazal and Lieutuer (2005)]

The 𝜆-medial axis of C , ℳ𝜆(C), is the set

ℳ𝜆(C) = {x ∈ C : for every ball B(y , r), such that Γ(x) ⊂ B(y , r) we have r ≥ 𝜆}.

𝜆

The 𝜆-medial axis leaves out those points of the medial axis whose projections on C

are too close together.

Chazal, F. and Lieutier, A. (2005).

The “𝜆-medial Axis”. J. Graphical Models, 67, 304–331.
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Introduction Definitions Estimation Computational issues Examples

Estimation of the 𝜆-medial axis

I This work deals with the statistical problem of estimating the 𝜆-medial axis,

ℳ𝜆(C) from a random sample of points X1, . . . ,Xn drawn inside C .
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Estimation of the 𝜆-medial axis

I This work deals with the statistical problem of estimating the 𝜆-medial axis,

ℳ𝜆(C) from a random sample of points X1, . . . ,Xn drawn inside C .

I The whole approach relies on a simple plug-in idea: we will use methods of set

estimation to get a suitable estimator Cn = Cn(X1, . . . ,Xn) of C and approximate

ℳ𝜆(C) by means of ℳ𝜆(Cn).

I If we choose an estimator Cn = Cn(X1, . . . ,Xn) of C such that dH(Cn,C) → 0

and dH(𝜕Cn, 𝜕C)→ 0 a.s, thenℳ𝜆(Cn) is a dH -consistent estimator ofℳ𝜆(C).
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Introduction Definitions Estimation Computational issues Examples

Applications to estimation. The Devroye-Wise estimator

I Given 𝒳n = {X1, . . . ,Xn} on a compact set C , the Devroye-Wise estimator is

Cn =

n⋃︁
i=1

B(Xi , 𝜖n),

where 𝜖n is a sequence of smoothing parameters.

I The boundary 𝜕Cn of the Devroye-Wise estimator consistently estimates 𝜕C ,

whenever the sequence 𝜖n → 0 is chosen large enough to ensure that C ⊂ Cn.
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Cuevas, A. and Rodríguez-Casal, A. (2004).

On Boundary Estimation Adv. Appl. Prob., 36, 340–354.
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Introduction Definitions Estimation Computational issues Examples

Applications to estimation. The r -convex hull estimator

I Let us assume that C fulfils the so-called r -convexity.

I A closed set C ⊂ R
d is said to be r -convex, r > 0, if for any x /∈ C there exist

an open ball with radius r , Bx , such that

x ∈ Bx , Bx ∩ C = ∅,

that is, x can be separated from C by an open ball with radius r .
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Introduction Definitions Estimation Computational issues Examples

Applications to estimation. The r -convex hull estimator

I By analogy with the convex hull, we may define the r -convex hull of a set A as

the “minimal r -convex set containing A”, that is

Convr (A) =
⋂︁

int(B(x ,r))∩A=∅

(int(B(x , r)))c

I The r -convex hull Cn = Convr (𝒳n) of a sample 𝒳n = {X1, . . . ,Xn}, drawn on a

compact support C , provides a natural estimator for C .
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Rodríguez-Casal, A. (2007)

Set estimation under convexity type assumptions. Annales de l’I.H.P. Probabilités & Statistiques, 43, 763-774.
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Introduction Definitions Estimation Computational issues Examples

Computational issues

I The exact computation of the medial axis is a difficult task, even in R2.

I Research has long focused on the computation of the medial axis of simple poly-

gons. In that case, the medial axis is formed by straight-line segments and

parabolic arcs.

I Attali and Montanvert (1997) characterize the medial axis of a union of balls and

Amenta and Kolluri (2001) present an algorithm for its construction.

I Not much has been published so far about the exact computation of the 𝜆-medial

axis of a set.

I We propose algorithms to compute the exact 𝜆-medial axis of sets whose shape

is given by a union of balls (such as the Devroye-Wise estimator) or by the com-

plement of a union of balls (such as the r -convex hull estimator).
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Algorithms to compute the 𝜆-medial axis

I Given a finite set of points in the plane 𝒞 = {c1, . . . , ck}, the Voronoi diagram of

𝒞, Vor(𝒞), is defined as a family of regions (Voronoi cells)

Vi = {x ∈ R2 : d(x , ci ) ≤ d(x , cj ),∀j = 1, . . . , k}, i = 1, . . . , k

(Vi is the set of points closest to ci than to any other point in 𝒞)

I We will denote by Vor0(𝒞) the union of the Voronoi edges of Vor(𝒞).
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Algorithms to compute the 𝜆-medial axis

I The Delaunay triangulation of the set of points 𝒞, Del(𝒞), is defined as the straight
line dual of the Voronoi diagram Vor(𝒞).

I Each Voronoi cell Vi corresponds to the Delaunay vertex ci .

I The Delaunay triangulation contains a straight line edge between the Delaunay

vertices ci and cj if and only if Vi and Vj share a common edge. Therefore, each

Voronoi edge corresponds to its dual Delaunay edge.

I Finally, each Voronoi vertex corresponds to a Delaunay triangle.
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An algorithm to compute the 𝜆-medial axis of the Devroye-Wise estimator

I Let Cn be the Devroye-Wise estimator of a sample 𝒳n = {X1, . . . ,Xn} in R2.

I The exact medial axis of Cn can be obtained using the algorithm by Amenta and

Kolluri (2001).

I This algorithm computes the medial axis of a union of balls from its dual shape.
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An algorithm to compute the 𝜆-medial axis of the Devroye-Wise estimator

I Let 𝒰 denote the union of a set of balls in R2 with equal radii.

I Let Vor(𝒞) be the Voronoi diagram of their centers and Del(𝒞) the corresponding
Delaunay triangulation.

I The dual shape 𝒮 of the union of balls 𝒰 is the union of all the Delaunay simplices

(vertices, edges and triangles) for which their corresponding Voronoi duals (cells,

edges and vertices, respectively) intersect 𝒰 .
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An algorithm to compute the 𝜆-medial axis of the Devroye-Wise estimator

I Note that 𝒮 could include isolated points or edges which are not part of any

triangle in 𝒮. These points and edges are the so-called singular faces. The regular

components are the connected components in 𝒮 that remain after removing the

singular faces.
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An algorithm to compute the 𝜆-medial axis of the Devroye-Wise estimator

I Given 𝒰 , a union of balls in R2, let us denote by 𝒱 the set of vertices of 𝒰 , that

is, the points in 𝜕𝒰 contained in the intersection of the balls in 𝒰 .

I According to Theorem 2 in Amenta and Kolluri (2001), given a union of balls,

𝒰 , and its dual shape, 𝒮, the medial axis of 𝒰 consists of the singular faces of 𝒮

plus the subset of Vor0(𝒱) which intersects the regular components of 𝒮.
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I Given 𝒰 , a union of balls in R2, let us denote by 𝒱 the set of vertices of 𝒰 , that

is, the points in 𝜕𝒰 contained in the intersection of the balls in 𝒰 .

I According to Theorem 2 in Amenta and Kolluri (2001), given a union of balls,

𝒰 , and its dual shape, 𝒮, the medial axis of 𝒰 consists of the singular faces of 𝒮

plus the subset of Vor0(𝒱) which intersects the regular components of 𝒮.
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An algorithm to compute the 𝜆-medial axis of the Devroye-Wise estimator

Algorithm 1. Compute the 𝜆-medial axis of the Devroye-Wise estimator

1. Given 𝒳n, compute the Devroye-Wise estimator Cn.

2. Compute ℳ(Cn) using the algorithm by Amenta and Kolluri (2001).

3. Initialize ℳ𝜆(Cn) to ℳ(Cn).
4. Let 𝒱 be the set of vertices of Cn. For each edge e in ℳ(Cn) let vi and vj

in 𝒱 defining the dual edge of e in the Delaunay triangulation of 𝒱. If the

distance between vi and vj is lower than 2𝜆, then the edge e is completely

removed from ℳ𝜆(Cn). Otherwise, e belongs to ℳ𝜆(Cn).
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Introduction Definitions Estimation Computational issues Examples

An algorithm to compute the 𝜆-medial axis of the r -convex hull estimator

I Let Cn be the r -convex hull of a sample 𝒳n = {X1, . . . ,Xn} in R2.

I We propose a procedure (Algorithm r -hull 1) to compute the exact medial axis

of Cn and then, we adapt this algorithm to calculate the 𝜆-medial axis of Cn

(Algorithm r -hull 2).

I The boundary of Cn consists of the union of a finite number of circumference

arcs of radius r . Therefore, Cn is contained in the complement of a finite union

of equal-radius balls.

I By Proposition 4.5 in Attali (1995), the medial axis of the complement of a

finite union of equal-radius balls can be obtained from the corresponding Voronoi

diagram of their centers.

Skip
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An algorithm to compute the 𝜆-medial axis of the r -convex hull estimator

Algorithm r -hull 1. Computing the medial axis of the r -convex hull estimator

1. Compute Cn, the r -convex hull of 𝒳n.

2. Determine the centers 𝒞 = {ci , i = 1, . . . , k} of the circumference arcs of

radius r that define the boundary of Cn.

3. Compute Vor(𝒞).
4. Return ℳ(Cn) = Vor0(𝒞) ∩ Cn, the intersection of Cn with the edges of

Vor(𝒞).
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An algorithm to compute the 𝜆-medial axis of the r -convex hull estimator

Algorithm r -hull 1. Computing the medial axis of the r -convex hull estimator

1. Compute Cn, the r -convex hull of 𝒳n.

2. Determine the centers 𝒞 = {ci , i = 1, . . . , k} of the circumference arcs of

radius r that define the boundary of Cn.

3. Compute Vor(𝒞).
4. Return ℳ(Cn) = Vor0(𝒞) ∩ Cn, the intersection of Cn with the edges of

Vor(𝒞).
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An algorithm to compute the 𝜆-medial axis of the r -convex hull estimator

Algorithm r -hull 1. Computing the medial axis of the r -convex hull estimator

1. Compute Cn, the r -convex hull of 𝒳n.

2. Determine the centers 𝒞 = {ci , i = 1, . . . , k} of the circumference arcs of

radius r that define the boundary of Cn.

3. Compute Vor(𝒞).
4. Return ℳ(Cn) = Vor0(𝒞) ∩ Cn, the intersection of Cn with the edges of

Vor(𝒞).
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An algorithm to compute the 𝜆-medial axis of the r -convex hull estimator

Algorithm r -hull 1. Computing the medial axis of the r -convex hull estimator

1. Compute Cn, the r -convex hull of 𝒳n.

2. Determine the centers 𝒞 = {ci , i = 1, . . . , k} of the circumference arcs of

radius r that define the boundary of Cn.

3. Compute Vor(𝒞).
4. Return ℳ(Cn) = Vor0(𝒞) ∩ Cn, the intersection of Cn with the edges of

Vor(𝒞).
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Introduction Definitions Estimation Computational issues Examples

An algorithm to compute the 𝜆-medial axis of the r -convex hull estimator

Algorithm r -hull 1. Computing the medial axis of the r -convex hull estimator

1. Compute Cn, the r -convex hull of 𝒳n.

2. Determine the centers 𝒞 = {ci , i = 1, . . . , k} of the circumference arcs of

radius r that define the boundary of Cn.

3. Compute Vor(𝒞).
4. Return ℳ(Cn) = Vor0(𝒞) ∩ Cn, the intersection of Cn with the edges of

Vor(𝒞).

Algorithms to estimate the 𝜆-medial axis 19th EYSM - Prague
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An algorithm to compute the 𝜆-medial axis of the r -convex hull estimator

Algorithm r -hull 2. Compute the 𝜆-medial axis of the r -convex hull estimator

1. Compute Cn, the r -convex hull of 𝒳n.

2. Compute ℳ(Cn) using Algorithm 1.

3. Initialize ℳ𝜆(Cn) to ℳ(Cn).
4. For each edge e inℳ(Cn) with vertices pi and pj , let ci and cj be the centers

in 𝒞 defining the dual edge of e in the Delaunay triangulation.

Case 1. One of the vertices of e belongs to 𝜕Cn

Case 2. Both vertices of e belong to the interior of Cn
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Introduction Definitions Estimation Computational issues Examples

Examples

I We analyze the behavior of our algorithms with an example of shape stored in

binary image format file.

I The data have been rescaled to the unit square.

I We have obtained a uniform sample of size n = 4000 from the image.

I The algorithms have been implemented in R.
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Figure: In solid black line boundary of Cn, the r -convex hull estimator for r = 0.025. (Left) In solid
gray line, ℳ(Cn). (Middle) In solid gray line, ℳ𝜆(Cn) for 𝜆 = 0.01. (Right) In solid gray line,
ℳ𝜆(Cn) for 𝜆 = 0.03.
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Figure: In solid black line boundary of Cn, the Devroye-Wise estimator for 𝜖 = 0.015. (Left) In
solid gray line, ℳ(Cn). (Middle) In solid gray line, ℳ𝜆(Cn) for 𝜆 = 0.01. (Right) In solid gray
line,ℳ𝜆(Cn) for 𝜆 = 0.03.
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