# On the estimation of the central core of a set. Algorithms to estimate the $\lambda$ -medial axis

Beatriz Pateiro López

Departamento de Estatística e Investigación Operativa Universidade de Santiago de Compostela

Joint work with Antonio Cuevas (UAM, Madrid) and Pamela Llop (UNL, Santa Fe)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

| Introduction |  |  |
|--------------|--|--|
|              |  |  |

# General statement of the problem

Precise meaning to the notion of "central core" or "central part" or "median" of a set?

| Introduction |  |  |
|--------------|--|--|
|              |  |  |

#### General statement of the problem

Precise meaning to the notion of "central core" or "central part" or "median" of a set?



- Different definitions have been proposed. The most popular one is perhaps the medial axis of a set. Other related notions are the skeleton and the cut locus.
- We are concerned with a modified version of the medial axis, called λ-medial axis, introduced in Chazal and Lieutier (2005) to deal with the well-known problem of instability in the medial axis.

| Introduction |  |  |
|--------------|--|--|
|              |  |  |

## General statement of the problem

Precise meaning to the notion of "central core" or "central part" or "median" of a set?



- Different definitions have been proposed. The most popular one is perhaps the medial axis of a set. Other related notions are the skeleton and the cut locus.
- We are concerned with a modified version of the medial axis, called λ-medial axis, introduced in Chazal and Lieutier (2005) to deal with the well-known problem of instability in the medial axis.

|             | Definitions |  |  |
|-------------|-------------|--|--|
| Medial axis |             |  |  |
|             |             |  |  |

- Let C be a bounded set in  $\mathbb{R}^d$  with non-empty interior such that  $C = \overline{int(C)}$ .
- For any  $x \in C$ , let us denote by  $\Gamma(x)$  the set of boundary points closest to x,

$$\Gamma(x) = \{y \in \partial C : d(x, y) = d(x, \partial C)\},\$$

where d(x, y) = ||x - y|| denotes the Euclidean distance between x and y in  $\mathbb{R}^d$ and also for a set  $A \subset \mathbb{R}^d$ ,  $d(x, A) = \inf\{d(x, y) : y \in A\}$ .





|             | Definitions |  |  |
|-------------|-------------|--|--|
| Medial axis |             |  |  |

#### Medial axis

The medial axis of C,  $\mathcal{M}(C)$ , is the set of points x of C, that have at least two closest boundary points, that is,  $\mathcal{M}(C) = \{x \in C : |\Gamma(x)| \ge 2\}$  where |E| denotes the cardinal of E.



|             | Definitions |  |  |
|-------------|-------------|--|--|
| Medial axis |             |  |  |

# Medial axis

The medial axis of C,  $\mathcal{M}(C)$ , is the set of points x of C, that have at least two closest boundary points, that is,  $\mathcal{M}(C) = \{x \in C : |\Gamma(x)| \ge 2\}$  where |E| denotes the cardinal of E.



|                        | Definitions |  |  |
|------------------------|-------------|--|--|
| $\lambda$ -medial axis |             |  |  |

• A major problem in the practical use of the medial axis  $\mathcal{M}(C)$  lies in its instability with respect to slight perturbations in the boundary  $\partial C$ 



|                        | Definitions |  |  |
|------------------------|-------------|--|--|
| $\lambda$ -medial axis |             |  |  |

• A major problem in the practical use of the medial axis  $\mathcal{M}(C)$  lies in its instability with respect to slight perturbations in the boundary  $\partial C$ 



|                        | Definitions |  |  |
|------------------------|-------------|--|--|
| $\lambda$ -medial axis |             |  |  |

 $\lambda$ -medial axis [Chazal and Lieutuer (2005)]

The  $\lambda$ -medial axis of C,  $\mathcal{M}_{\lambda}(C)$ , is the set

 $\mathcal{M}_{\lambda}(C) = \{x \in C : \text{ for every ball } B(y, r), \text{ such that } \Gamma(x) \subset B(y, r) \text{ we have } r \geq \lambda\}.$ 



The  $\lambda$ -medial axis leaves out those points of the medial axis whose projections on C are too close together.



The "λ-medial Axis". J. Graphical Models, 67, 304-331.

|                   |               | Estimation |  |
|-------------------|---------------|------------|--|
| Estimation of the | λ-medial axis |            |  |
| Estimation of the | A mediar axis |            |  |
|                   |               |            |  |



|                   |                        | Estimation |  |
|-------------------|------------------------|------------|--|
| Estimation of the | $\lambda$ -medial axis |            |  |



글 🕨 🖌 글

|                   |                        | Estimation |  |
|-------------------|------------------------|------------|--|
| Estimation of the | $\lambda$ -medial axis |            |  |



- The whole approach relies on a simple plug-in idea: we will use methods of set estimation to get a suitable estimator  $C_n = C_n(X_1, \ldots, X_n)$  of C and approximate  $\mathcal{M}_{\lambda}(C)$  by means of  $\mathcal{M}_{\lambda}(C_n)$ .
- ▶ If we choose an estimator  $C_n = C_n(X_1, ..., X_n)$  of C such that  $d_H(C_n, C) \to 0$ and  $d_H(\partial C_n, \partial C) \to 0$  a.s, then  $\mathcal{M}_\lambda(C_n)$  is a  $d_H$ -consistent estimator of  $\mathcal{M}_\lambda(C)$ .

(日) (四) (三) (三)

|                   |                        | Estimation |  |
|-------------------|------------------------|------------|--|
| Estimation of the | $\lambda$ -medial axis |            |  |



- The whole approach relies on a simple plug-in idea: we will use methods of set estimation to get a suitable estimator  $C_n = C_n(X_1, \ldots, X_n)$  of C and approximate  $\mathcal{M}_{\lambda}(C)$  by means of  $\mathcal{M}_{\lambda}(C_n)$ .
- ▶ If we choose an estimator  $C_n = C_n(X_1, ..., X_n)$  of C such that  $d_H(C_n, C) \to 0$ and  $d_H(\partial C_n, \partial C) \to 0$  a.s, then  $\mathcal{M}_\lambda(C_n)$  is a  $d_H$ -consistent estimator of  $\mathcal{M}_\lambda(C)$ .

< ロ > < 回 > < 回 > < 回 > < 回 >

|  | Estimation |  |
|--|------------|--|
|  |            |  |

Applications to estimation. The Devroye-Wise estimator

• Given  $X_n = \{X_1, \dots, X_n\}$  on a compact set C, the Devroye-Wise estimator is

$$C_n = \bigcup_{i=1}^n B(X_i, \epsilon_n),$$

where  $\epsilon_n$  is a sequence of smoothing parameters.

▶ The boundary  $\partial C_n$  of the Devroye-Wise estimator consistently estimates  $\partial C$ , whenever the sequence  $\epsilon_n \rightarrow 0$  is chosen large enough to ensure that  $C \subset C_n$ .





Cuevas, A. and Rodríguez-Casal, A. (2004).

On Boundary Estimation Adv. Appl. Prob., 36, 340-354.

|              |                | Estimation                    |          |  |
|--------------|----------------|-------------------------------|----------|--|
|              | an chathradain | The a second bull s           |          |  |
| Applications | to estimation. | I ne <i>r</i> -convex null es | stimator |  |

- ▶ Let us assume that C fulfils the so-called r-convexity.
- ▶ A closed set  $C \subset \mathbb{R}^d$  is said to be *r*-convex, r > 0, if for any  $x \notin C$  there exist an open ball with radius r,  $B_x$ , such that

$$x \in B_x$$
,  $B_x \cap C = \emptyset$ ,

that is, x can be separated from C by an open ball with radius r.



A E > A E

Introduction Definitions **Estimation** Computational issues Example

Applications to estimation. The r-convex hull estimator

▶ By analogy with the convex hull, we may define the *r*-convex hull of a set *A* as the "minimal *r*-convex set containing *A*", that is

$$\operatorname{Conv}_r(A) = \bigcap_{\operatorname{int}(B(x,r)) \cap A = \emptyset} (\operatorname{int}(B(x,r)))^c$$

• The *r*-convex hull  $C_n = \text{Conv}_r(\mathcal{X}_n)$  of a sample  $\mathcal{X}_n = \{X_1, \ldots, X_n\}$ , drawn on a compact support *C*, provides a natural estimator for *C*.





Rodríguez-Casal, A. (2007)

Set estimation under convexity type assumptions. Annales de l'I.H.P. Probabilités & Statistiques, 43, 763-774.

・ロト ・回 ト ・ ヨト ・ ヨ

| Introduction                                     | Definitions                                                | Estimation                                  | Computational issues                                       | Examples            |
|--------------------------------------------------|------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------|---------------------|
| Computation                                      | al issues                                                  |                                             |                                                            |                     |
|                                                  |                                                            |                                             |                                                            |                     |
| ► The                                            | exact computation c                                        | of the medial axis is a                     | difficult task, even in $\mathbb{R}^2.$                    |                     |
| <ul> <li>Rese<br/>gons</li> <li>paral</li> </ul> | arch has long focuse<br>. In that case, the<br>polic arcs. | d on the computation<br>medial axis is form | n of the medial axis of simp<br>ed by straight-line segmen | le poly-<br>nts and |

- Attali and Montanvert (1997) characterize the medial axis of a union of balls and Amenta and Kolluri (2001) present an algorithm for its construction.
- $\blacktriangleright$  Not much has been published so far about the exact computation of the  $\lambda\text{-medial}$  axis of a set.
- We propose algorithms to compute the exact λ-medial axis of sets whose shape is given by a union of balls (such as the Devroye-Wise estimator) or by the complement of a union of balls (such as the *r*-convex hull estimator).

Introduction Definitions Estimation Computational issues Examples Algorithms to compute the  $\lambda$ -medial axis

• Given a finite set of points in the plane  $C = \{c_1, \ldots, c_k\}$ , the Voronoi diagram of C, Vor(C), is defined as a family of regions (Voronoi cells)

$$V_i = \{x \in \mathbb{R}^2 : d(x, c_i) \le d(x, c_j), \forall j = 1, ..., k\}, i = 1, ..., k$$

(V<sub>i</sub> is the set of points closest to  $c_i$  than to any other point in C)

• We will denote by  $Vor_0(\mathcal{C})$  the union of the Voronoi edges of  $Vor(\mathcal{C})$ .



Introduction Definitions Estimation Computational issues Examples Algorithms to compute the  $\lambda$ -medial axis

• Given a finite set of points in the plane  $C = \{c_1, \ldots, c_k\}$ , the Voronoi diagram of C, Vor(C), is defined as a family of regions (Voronoi cells)

$$V_i = \{x \in \mathbb{R}^2 : d(x, c_i) \le d(x, c_j), \forall j = 1, ..., k\}, i = 1, ..., k$$

(V<sub>i</sub> is the set of points closest to  $c_i$  than to any other point in C)

• We will denote by  $Vor_0(\mathcal{C})$  the union of the Voronoi edges of  $Vor(\mathcal{C})$ .



|               | Definitions               |                     | Computational issues |  |
|---------------|---------------------------|---------------------|----------------------|--|
|               |                           | and alter the state |                      |  |
| Algorithms to | o compute the $\lambda$ - | medial axis         |                      |  |
|               |                           |                     |                      |  |
|               |                           |                     |                      |  |
|               |                           |                     |                      |  |

- ► The Delaunay triangulation of the set of points C, Del(C), is defined as the straight line dual of the Voronoi diagram Vor(C).
- Each Voronoi cell  $V_i$  corresponds to the Delaunay vertex  $c_i$ .
- The Delaunay triangulation contains a straight line edge between the Delaunay vertices c<sub>i</sub> and c<sub>j</sub> if and only if V<sub>i</sub> and V<sub>j</sub> share a common edge. Therefore, each Voronoi edge corresponds to its dual Delaunay edge.
- Finally, each Voronoi vertex corresponds to a Delaunay triangle.



|               | Definitions               |                     | Computational issues |  |
|---------------|---------------------------|---------------------|----------------------|--|
|               |                           | and alter the state |                      |  |
| Algorithms to | o compute the $\lambda$ - | medial axis         |                      |  |
|               |                           |                     |                      |  |
|               |                           |                     |                      |  |
|               |                           |                     |                      |  |

- ► The Delaunay triangulation of the set of points C, Del(C), is defined as the straight line dual of the Voronoi diagram Vor(C).
- Each Voronoi cell  $V_i$  corresponds to the Delaunay vertex  $c_i$ .
- The Delaunay triangulation contains a straight line edge between the Delaunay vertices c<sub>i</sub> and c<sub>j</sub> if and only if V<sub>i</sub> and V<sub>j</sub> share a common edge. Therefore, each Voronoi edge corresponds to its dual Delaunay edge.
- Finally, each Voronoi vertex corresponds to a Delaunay triangle.



|              |              |                              | Computational issues       |  |
|--------------|--------------|------------------------------|----------------------------|--|
| An algorithm | to compute t | he $\lambda$ -medial axis of | the Devrove-Wise estimator |  |

- Let  $C_n$  be the Devroye-Wise estimator of a sample  $\mathcal{X}_n = \{X_1, \ldots, X_n\}$  in  $\mathbb{R}^2$ .
- > The exact medial axis of  $C_n$  can be obtained using the algorithm by Amenta and Kolluri (2001).
- > This algorithm computes the medial axis of a union of balls from its dual shape.

イロト イヨト イヨト イヨト

|              |                  |                             | Computational issues     |   |
|--------------|------------------|-----------------------------|--------------------------|---|
|              |                  |                             |                          |   |
| An algorithm | n to compute the | $\lambda$ -medial axis of t | he Devroye-Wise estimato | r |

- $\blacktriangleright$  Let  ${\mathcal U}$  denote the union of a set of balls in  ${\mathbb R}^2$  with equal radii.
- Let Vor(C) be the Voronoi diagram of their centers and Del(C) the corresponding Delaunay triangulation.
- The dual shape S of the union of balls U is the union of all the Delaunay simplices (vertices, edges and triangles) for which their corresponding Voronoi duals (cells, edges and vertices, respectively) intersect U.



|              |                |                             | Computational issues       |  |
|--------------|----------------|-----------------------------|----------------------------|--|
| An algorithm | to compute the | $\lambda$ -medial axis of t | the Devrove-Wise estimator |  |

- Let  $\mathcal{U}$  denote the union of a set of balls in  $\mathbb{R}^2$  with equal radii.
- Let Vor(C) be the Voronoi diagram of their centers and Del(C) the corresponding Delaunay triangulation.
- The dual shape S of the union of balls U is the union of all the Delaunay simplices (vertices, edges and triangles) for which their corresponding Voronoi duals (cells, edges and vertices, respectively) intersect U.



|              |                |                               | Computational issues     |  |
|--------------|----------------|-------------------------------|--------------------------|--|
| An algorithm | to compute the | $\lambda$ -medial axis of the | P Devrove-Wise estimator |  |

- Let  $\mathcal{U}$  denote the union of a set of balls in  $\mathbb{R}^2$  with equal radii.
- Let Vor(C) be the Voronoi diagram of their centers and Del(C) the corresponding Delaunay triangulation.
- The dual shape S of the union of balls U is the union of all the Delaunay simplices (vertices, edges and triangles) for which their corresponding Voronoi duals (cells, edges and vertices, respectively) intersect U.



|              |                |                                 | Computational issues   |  |
|--------------|----------------|---------------------------------|------------------------|--|
| An algorithm | to compute the | e $\lambda$ -medial axis of the | Devrove-Wise estimator |  |

Note that S could include isolated points or edges which are not part of any triangle in S. These points and edges are the so-called singular faces. The regular components are the connected components in S that remain after removing the singular faces.



|              |              |                                        | Computational issues       |  |
|--------------|--------------|----------------------------------------|----------------------------|--|
| An algorithm | to compute t | $\lambda$ = $\lambda$ - medial axis of | the Devrove-Wise estimator |  |

- Given  $\mathcal{U}$ , a union of balls in  $\mathbb{R}^2$ , let us denote by  $\mathcal{V}$  the set of vertices of  $\mathcal{U}$ , that is, the points in  $\partial \mathcal{U}$  contained in the intersection of the balls in  $\mathcal{U}$ .
- According to Theorem 2 in Amenta and Kolluri (2001), given a union of balls, *U*, and its dual shape, *S*, the medial axis of *U* consists of the singular faces of *S* plus the subset of Vor<sub>0</sub>(*V*) which intersects the regular components of *S*.



|              |               |                            | Computational issues         |  |
|--------------|---------------|----------------------------|------------------------------|--|
| An algorithm | to compute th | $e \lambda$ -medial axis o | f the Devrove-Wise estimator |  |

- Given  $\mathcal{U}$ , a union of balls in  $\mathbb{R}^2$ , let us denote by  $\mathcal{V}$  the set of vertices of  $\mathcal{U}$ , that is, the points in  $\partial \mathcal{U}$  contained in the intersection of the balls in  $\mathcal{U}$ .
- According to Theorem 2 in Amenta and Kolluri (2001), given a union of balls, *U*, and its dual shape, *S*, the medial axis of *U* consists of the singular faces of *S* plus the subset of Vor<sub>0</sub>(*V*) which intersects the regular components of *S*.



|              |                  |                                    | Computational issues       |  |
|--------------|------------------|------------------------------------|----------------------------|--|
|              |                  |                                    |                            |  |
| An algorithm | n to compute the | $\lambda$ -medial axis of $\gamma$ | the Devroye-Wise estimator |  |

- Given  $\mathcal{U}$ , a union of balls in  $\mathbb{R}^2$ , let us denote by  $\mathcal{V}$  the set of vertices of  $\mathcal{U}$ , that is, the points in  $\partial \mathcal{U}$  contained in the intersection of the balls in  $\mathcal{U}$ .
- According to Theorem 2 in Amenta and Kolluri (2001), given a union of balls, *U*, and its dual shape, *S*, the medial axis of *U* consists of the singular faces of *S* plus the subset of Vor<sub>0</sub>(*V*) which intersects the regular components of *S*.



An algorithm to compute the  $\lambda$ -medial axis of the Devroye-Wise estimator

Algorithm 1. Compute the  $\lambda$ -medial axis of the Devroye-Wise estimator

- 1. Given  $\mathcal{X}_n$ , compute the Devroye-Wise estimator  $C_n$ .
- 2. Compute  $\mathcal{M}(C_n)$  using the algorithm by Amenta and Kolluri (2001).
- 3. Initialize  $\mathcal{M}_{\lambda}(C_n)$  to  $\mathcal{M}(C_n)$ .
- 4. Let  $\mathcal{V}$  be the set of vertices of  $C_n$ . For each edge e in  $\mathcal{M}(C_n)$  let  $v_i$  and  $v_j$  in  $\mathcal{V}$  defining the dual edge of e in the Delaunay triangulation of  $\mathcal{V}$ . If the distance between  $v_i$  and  $v_j$  is lower than  $2\lambda$ , then the edge e is completely removed from  $\mathcal{M}_{\lambda}(C_n)$ . Otherwise, e belongs to  $\mathcal{M}_{\lambda}(C_n)$ .



## An algorithm to compute the $\lambda$ -medial axis of the Devroye-Wise estimator

Algorithm 1. Compute the  $\lambda$ -medial axis of the Devroye-Wise estimator

- 1. Given  $\mathcal{X}_n$ , compute the Devroye-Wise estimator  $C_n$ .
- 2. Compute  $\mathcal{M}(C_n)$  using the algorithm by Amenta and Kolluri (2001).
- 3. Initialize  $\mathcal{M}_{\lambda}(C_n)$  to  $\mathcal{M}(C_n)$ .
- 4. Let  $\mathcal{V}$  be the set of vertices of  $C_n$ . For each edge e in  $\mathcal{M}(C_n)$  let  $v_i$  and  $v_j$  in  $\mathcal{V}$  defining the dual edge of e in the Delaunay triangulation of  $\mathcal{V}$ . If the distance between  $v_i$  and  $v_j$  is lower than  $2\lambda$ , then the edge e is completely removed from  $\mathcal{M}_{\lambda}(C_n)$ . Otherwise, e belongs to  $\mathcal{M}_{\lambda}(C_n)$ .



|              |                  |                               | Computational issues     |   |
|--------------|------------------|-------------------------------|--------------------------|---|
|              |                  |                               |                          |   |
| An algorithn | n to compute the | $\lambda$ -medial axis of the | e r-convex hull estimato | r |

- Let  $C_n$  be the *r*-convex hull of a sample  $\mathcal{X}_n = \{X_1, \ldots, X_n\}$  in  $\mathbb{R}^2$ .
- We propose a procedure (Algorithm *r*-hull 1) to compute the exact medial axis of  $C_n$  and then, we adapt this algorithm to calculate the  $\lambda$ -medial axis of  $C_n$  (Algorithm *r*-hull 2).
- The boundary of  $C_n$  consists of the union of a finite number of circumference arcs of radius r. Therefore,  $C_n$  is contained in the complement of a finite union of equal-radius balls.
- By Proposition 4.5 in Attali (1995), the medial axis of the complement of a finite union of equal-radius balls can be obtained from the corresponding Voronoi diagram of their centers.

▶ Skip

イロト イヨト イヨト イヨト

|  | Computational issues |
|--|----------------------|
|  |                      |

- 1. Compute  $C_n$ , the *r*-convex hull of  $\mathcal{X}_n$ .
- 2. Determine the centers  $C = \{c_i, i = 1, ..., k\}$  of the circumference arcs of radius r that define the boundary of  $C_n$ .
- 3. Compute Vor(C).
- 4. Return  $\mathcal{M}(C_n) = \operatorname{Vor}_0(\mathcal{C}) \cap C_n$ , the intersection of  $C_n$  with the edges of  $\operatorname{Vor}(\mathcal{C})$ .



|  | Computational issu |
|--|--------------------|
|  |                    |

- 1. Compute  $C_n$ , the *r*-convex hull of  $\mathcal{X}_n$ .
- 2. Determine the centers  $C = \{c_i, i = 1, ..., k\}$  of the circumference arcs of radius r that define the boundary of  $C_n$ .
- 3. Compute Vor(C).
- 4. Return  $\mathcal{M}(C_n) = \operatorname{Vor}_0(\mathcal{C}) \cap C_n$ , the intersection of  $C_n$  with the edges of  $\operatorname{Vor}(\mathcal{C})$ .



- 1. Compute  $C_n$ , the *r*-convex hull of  $\mathcal{X}_n$ .
- 2. Determine the centers  $C = \{c_i, i = 1, ..., k\}$  of the circumference arcs of radius r that define the boundary of  $C_n$ .
- 3. Compute Vor(C).
- 4. Return  $\mathcal{M}(C_n) = \operatorname{Vor}_0(\mathcal{C}) \cap C_n$ , the intersection of  $C_n$  with the edges of  $\operatorname{Vor}(\mathcal{C})$ .



|--|--|

- 1. Compute  $C_n$ , the *r*-convex hull of  $\mathcal{X}_n$ .
- 2. Determine the centers  $C = \{c_i, i = 1, ..., k\}$  of the circumference arcs of radius r that define the boundary of  $C_n$ .
- 3. Compute Vor(C).
- 4. Return  $\mathcal{M}(C_n) = \operatorname{Vor}_0(\mathcal{C}) \cap C_n$ , the intersection of  $C_n$  with the edges of  $\operatorname{Vor}(\mathcal{C})$ .



- 1. Compute  $C_n$ , the *r*-convex hull of  $\mathcal{X}_n$ .
- 2. Determine the centers  $C = \{c_i, i = 1, ..., k\}$  of the circumference arcs of radius r that define the boundary of  $C_n$ .
- 3. Compute Vor(C).
- 4. Return  $\mathcal{M}(C_n) = \operatorname{Vor}_0(\mathcal{C}) \cap C_n$ , the intersection of  $C_n$  with the edges of  $\operatorname{Vor}(\mathcal{C})$ .



Algorithm r-hull 2. Compute the  $\lambda$ -medial axis of the r-convex hull estimator

- 1. Compute  $C_n$ , the *r*-convex hull of  $\mathcal{X}_n$ .
- 2. Compute  $\mathcal{M}(C_n)$  using Algorithm 1.
- 3. Initialize  $\mathcal{M}_{\lambda}(C_n)$  to  $\mathcal{M}(C_n)$ .
- 4. For each edge e in  $\mathcal{M}(C_n)$  with vertices  $p_i$  and  $p_j$ , let  $c_i$  and  $c_j$  be the centers in C defining the dual edge of e in the Delaunay triangulation.

*Case 1. One of the vertices of e belongs to*  $\partial C_n$ 

Case 2. Both vertices of e belong to the interior of  $C_n$ 



| unu |  |  |
|-----|--|--|

Definitions

#### Examples

- We analyze the behavior of our algorithms with an example of shape stored in binary image format file.
- The data have been rescaled to the unit square.
- We have obtained a uniform sample of size n = 4000 from the image.
- The algorithms have been implemented in R.



| Introduction | Definitions | E   | stimation                 | Computationa | l issues | Example |
|--------------|-------------|-----|---------------------------|--------------|----------|---------|
| Examples     |             |     |                           |              |          |         |
|              |             |     |                           |              |          |         |
|              |             |     |                           |              |          |         |
|              |             |     |                           |              |          |         |
|              |             |     |                           |              |          |         |
| 50 P         |             | 0°5 | $\langle \langle \rangle$ | 00<br>0      | <1.      |         |



Figure: In solid black line boundary of  $C_n$ , the *r*-convex hull estimator for r = 0.025. (Left) In solid gray line,  $\mathcal{M}(C_n)$ . (Middle) In solid gray line,  $\mathcal{M}_{\lambda}(C_n)$  for  $\lambda = 0.01$ . (Right) In solid gray line,  $\mathcal{M}_{\lambda}(C_n)$  for  $\lambda = 0.03$ .

・ロト ・回ト ・ヨト ・

| Examples |  |  |
|----------|--|--|



Figure: In solid black line boundary of  $C_n$ , the Devroye-Wise estimator for  $\epsilon = 0.015$ . (Left) In solid gray line,  $\mathcal{M}(C_n)$ . (Middle) In solid gray line,  $\mathcal{M}_{\lambda}(C_n)$  for  $\lambda = 0.01$ . (Right) In solid gray line,  $\mathcal{M}_{\lambda}(C_n)$  for  $\lambda = 0.03$ .

・ロト ・回ト ・ヨト ・





Cuevas, A., Llop, P., Pateiro-López, B. (2014).

On the estimation of the medial axis and inner parallel body. Journal of Multivariate Analysis, 129, 171-185.

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣…