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Linear mixed model (LMM)

Y=XB+Zu+eg,

where
Y isan x 1 known vector of observations, E(Y) = X;
isap x 1 unknown vector of fixed effects;

X >

isan x p known design matrix relating the

observations Y to f3;

u isaq x 1 unknown vector of random effects,
E(u) =0and Var(u) = D;

Z isan x q known design matrix relating the

observations Y to u;

¢ isan x 1 unknown vector of random errors,
E(¢) = 0and Var(e) = R.
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High-dimensional LMM
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Motivation

LMM allows us to specify the covariance structure of the
model, which enables us to capture relationships in data.

For example:
= population structure,
= family relatedness.
This could, for example, be handy in:
= Genome-wide association studies (GWAS)
= Mass spectrometry studies
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Variable selection

We know that:

= only a small subset of all p variables (in X) influence
observations Y. We denote this subset S® and s° = |S°];

= all q variables (in Z) influence observations Y, but the effect of
some variables can be very small.

We aim for an estimate of the S°.
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Example
We investigate which genetics aspects influence the size of soya
beans.
DNA with 10° variables.
Just a small group of relevant genetics variables.

A few relevant external variables, for example weather, land ...
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Methods

All of the following methods are primarily B° estimation methods,
not selection methods. However, they can be thought of as
selection methods if we define selected variables to be those for
which [§i #0fori=1,...,p.

After variable selection:

= Estimation e Henderson's mixed models equation - BLUE for 3
and BLUP foru

= Model selection e Cross-validation, Information criteria, ...
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Methods

= LASSO [Tibshirani, 1996]

ﬁ:orgﬁmin 1Y —XB|I5+ Bl |,

= LMMLASSO [Schelldorfer et al., 2011]
= LASSOP [Rohart et al., 2014]

Two new approaches
= Naive transformation to linear regression
= Convex method
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Existing methods
LMMLASSO

(., = argmin |3 log|zl-+ (Y —XB)"E" (Y~ Xp) + Al

$,02>0,D>0

where £ = (ZDZ" +R).

LASSOP

B,02>0,D>0

1 1 ,
+5 log D| + EuTD "u+ B

= generally not convex
= similar results

= both implemented in R
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(B,D, %) = arg min B log |R| + % (Y=XB—Zu)"R"(Y-XB —Zu)
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Naive method

Data transformation that removes random effects:

(I—-ZZM)X,

X
Y=(1-2Z")Y,

where Z7 is the pseudoinverse matrix.

The transformation allows us to use the LASSO method for linear
regression models.
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Convex method

*

q
(B,1t) = arg min [[Y = XB — Zu||5 —AIBh —AD_ | uli],
,u

i=1

where A and A are fixed parameters, q* is the number of variance
components (without error) and ;u is the part of vector u belonging to
the i-th variance component.

= convex

= we use MATLAB with the convex programming modeling system CVX
and the solver Mosek
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Simulation study

n = 120 observations divided into twenty groups of six

p = 150 all available fixed variables
= s0={1,...,10} relevant fixed variables
» q"=2,q9q=40
= u consists of two parts, one for each variance component and
u~AN(O0,D=2-1)
= e~ N(O,D=1)
As a correctly solved problem we consider only a problem for

which the method gives for at least one parameter or parameter
combination as the selected variable set exactly the set S°.
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Result
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Correctly solved problems

-=New approach one

-+New approach two
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Summary

= Thanks to convexity, both ‘new’ methods can solve problems
with dimension up to 10° variables. On the other hand, neither
of the ‘old’ method can handle with more then 10° variables.

= For solving the convex problem, it is possible to use good
existing software.

= Both ‘new’ methods hit exactly the set S° more times than the
‘old’ methods.
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