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Introduction

multiple linear regression model: Y = β0 + β1X1 + . . .+ βdXd + ε

• mean regression function

E (ε|X1, . . . , Xd) = 0 =⇒ E(Y |X1, . . . , Xd) = β0 +

d∑
j=1

βjXj

β = (β0, β1, . . . , βd)
T = argmin

β
E

Y − β0 −
d∑

j=1

βjXj

2

• quantile regression function

denote (for 0 ≤ τ ≤ 1) : F−1
ε|X1,...,Xd

(τ) = infz
{
z : Fε|X1,...,Xd

(z) ≥ τ
}

the τ th conditional quantile of ε

=⇒ the τ th conditional quantile of Y given X1, . . . , Xd
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Introduction

qτ (Y |X1, . . . , Xd) = β0 +

d∑
j=1

βjXj + F−1
ε|X1,...,Xd

(τ)

if F−1
ε|X1,...,Xd

(τ) = F−1
ε (τ), then

qτ (Y |X1, . . . , Xd) = β0 + F−1
ε (τ)︸ ︷︷ ︸

=βτ
0

+

d∑
j=1

βjXj

β = (β0, β1, . . . , βd)
T = argmin β E ρτ

Y − β0 −
d∑

j=1

βjXj


ρτ (z) =

{
τ z if z > 0
−(1− τ) z otherwise
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Least-squares and Ridge regression

mean regression function

observations:
(Y1, X11, . . . , X1d), . . . , (Yn, Xn1, . . . , Xnd) i.i.d. from (Y,X1, . . . , Xd)

estimation of the mean regression coëfficients

β = (β0, β1, . . . , βd)
T = argmin

β
E

Y − β0 −
d∑

j=1

βjXj

2

Ordinary Least-Squares method:

min
β0,β1,...,βd

n∑
i=1

Yi − β0 −
d∑

j=1

βjXij

2

=⇒ β̂OLS
j , j = 0, 1, . . . , d
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Least-squares and Ridge regression

Y =

 Y1
...
Yn

 β =


β0
β1
...
βd

 and X =

 1 X11 · · · X1d
...

...
...

1 Xn1 · · · Xnd


n× (d+ 1) design matrix

least-squares minimization problem: min
β

(Y− Xβ)T (Y− Xβ)

=⇒ β̂
OLS

= (β̂OLS
0 , · · · , β̂OLS

d )T

provided the inverse of the matrix XTX exists, the solution is

β̂
OLS

= (XTX)−1XTY

inference about β̂
OLS

follows rather easily from this expression

some assumptions are needed of course ...
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Least-squares and Ridge regression

Yi = β0 + β1Xi1 + . . .+ βdXid + εi i = 1, . . . , n

if the εi’s are independent and identically distributed

with E (εi|Xi1, . . . , Xid) = 0 and Var (εi|Xi1, . . . , Xid) = σ2 then denoting

X = {(X11, . . . , X1d), . . . , (Xn1, . . . , Xnd)}
• the least-squares estimator is a (conditionally) unbiased estimator:

E
(
β̂
OLS

|X
)
= β

• the conditional variance-covariance matrix of β̂
OLS

is:

V
(
β̂
OLS

|X
)
= (XTX)−1σ2

• the OLS estimator is an unbiased estimator
it has the lowest variance of all unbiased estimators

• but with increasing correlation between the explanatory variables, the
covariances between the corresponding estimated coefficients increase
in other words: a strong correlation between the explanatory variables
can be problematic
or, the quantity (XTX)−1 can be large ...
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Least-squares and Ridge regression

consider estimators that may have a small bias but have a lower variance
....

Ridge regression (Hoerl & Kennard (1970), ...) :

min
β0,β1,...,βd


n∑

i=1

Yi − β0 −
d∑

j=1

βjXij

2

+ λ

d∑
j=0

β2j

 λ > 0

or, in matrix notation (for simplicity without intercept)

min
β

{
(Y− Xβ)T (Y− Xβ) + λ‖β‖22

}
‖β‖22 =

d∑
j=1

β2j the L2-norm of the vector β

provided the inverse of the matrix XTX exists, the solution is

β̂
Ridge

=
(
XTX+ λId

)−1
XTY

with Id the identity matrix of dimension d× d
I. Gijbels 19th European Young Statisticians Meeting Prague, September 2, 2015 10 / 71



Least-squares and Ridge regression

β̂
Ridge

=
(
XTX+ λId

)−1
XTY =

(
XTX+ λId︸ ︷︷ ︸

Sλ

)−1
XTX β̂

OLS

(conditional) bias and variance-covariance matrix of the Ridge regression
estimator:

E
(
β̂
Ridge

|X
)
= β − λ

(
XTX+ λId

)−1
β = β−λS−1

λ β

(conditional) variance-covariance matrix of
(
β̂
Ridge

)
V
(
β̂
Ridge

|X
)
= σ2S−1

λ XTXS−1
λ ≤ λ−2V

(
β̂
OLS

|X
)

• the bias depends on λ, the design matrix and the true β

• the variance is smaller than that of the OLS estimator
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Least-squares and Ridge regression

in case of an orthogonal design matrix X, i.e. when XTX = Id, we have
that Sλ = XTX+ λId = (1 + λ)Id, and

β̂
Ridge

=
1

1 + λ
β̂
OLS

the Ridge parameter results in a shrinkage of the least-squares regression
coefficients, but none of the coefficients will be put to zero (no selection)

the Ridge regression minimization problem is equivalent to the
minimization problem

min
β

(Y− Xβ)T (Y− Xβ) subject to ‖β‖22 ≤ s

with s > 0 a shrinkage/regularization parameter
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Regularization and penalization methods

• Ordinary least-squares: min
β

{
(Y− Xβ)T (Y− Xβ)

}
• Ridge regression:

min
β

{
(Y− Xβ)T (Y− Xβ) + λ‖β‖22

}
‖β‖22 =

d∑
j=1

β2j L2-norm

• Least Absolute Shrinkage and Selection Operator (LASSO) :

min
β

{
(Y− Xβ)T (Y− Xβ) + λ‖β‖1

}
‖β‖1 =

d∑
j=1

|βj | L1-norm

(Tibshirani (1996, 2014), Lockhart et al. (2014), ...

• Bridge regression ( 0 < γ < 1 ) :

min
β

{
(Y− Xβ)T (Y− Xβ) + λ‖β‖γγ

}
‖β‖γγ =

d∑
j=1

|βj |γ Lγ-norm

(Frank & Frieman (1993), Fu (1998), Knight & Fu (2000), ...)
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Regularization and penalization methods

• Elastic net:

min
β

{
(Y− Xβ)T (Y− Xβ) + λ1‖β‖1 + λ2‖β‖22

}
(Zou & Hastie (2005), Wu (2012), Slawski (2012), Zhou (2013), ...)

• Adaptive LASSO:

min
β

(Y− Xβ)T (Y− Xβ) + λ

d∑
j=1

wj |βj |


with wj > 0 weights (depending on the data), e.g. wj =

1∣∣∣β̂OLS
j

∣∣∣
(Zou (2006), Potscher & Schneider (2009), ...)

• ...
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Regularization and penalization methods

the optimization problem of the lasso method can be re-expressed via the
equivalent optimization problem

min
β

(Y− Xβ)T (Y− Xβ) subject to ‖β‖1 ≤ s

with s > 0 a shrinkage/regularization parameter

in case of an orthogonal design matrix X, there is an explicit relationship

between the ordinary least-squares estimator β̂
OLS

and the lasso
regression estimator

β̂
LASSO

j = sign
(
β̂
OLS

j

)
max

(
0,
∣∣∣β̂OLS

j

∣∣∣− λ
)

j = 1, . . . , d

this clearly shows the shrinking and selection effect of the lasso method
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Regularization and penalization methods
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Figure: OLS estimates and some other estimates.
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Regularization and penalization methods

the nonnegative garrote method (Breiman (1995))

basic idea:

find shrinkage factors (c1, . . . , cd) that shrink the least-squares
regression coefficients: instead of an estimated coefficient β̂OLS

j

one considers cj β̂
OLS
j

a shrinkage should

• not alter the sign of a covariate’s influence in the linear model

• be globally a real shrinkage of the original regression coefficients:

cj ≥ 0 , for j = 1, . . . , d, and
d∑

j=1

cj ≤ s with s ≤ d
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Regularization and penalization methods

the nonnegative garrote shrinkage factors ĉj are found by solving the
optimization problem

min
c1,...,cd

n∑
i=1

Yi − d∑
j=1

cj β̂
OLS
j Xij

2

subject to 0 ≤ cj , for j = 1, . . . , d, and
d∑

j=1

cj ≤ s

for given s, also equivalent to the optimization problem
min

c1,...,cd


n∑

i=1

Yi − d∑
j=1

cj β̂
OLS
j Xij

2

+ λ

d∑
j=1

cj


subject to 0 ≤ cj , for j = 1, . . . , d ,

for given λ > 0
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Regularization and penalization methods

the nonnegative garrote (NNG) estimator of the regression coefficient βj
(model without intercept term) is

β̂NNG
j = ĉj β̂

OLS
j j = 1, . . . , d

and in the special case of an orthogonal design matrix :

ĉj = max

0, 1− λ(
β̂OLS
j

)2


=⇒ shrinking and selection effect (if
(
β̂OLS
j

)2
< λ)
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Regularization and penalization methods

example: Boston Housing data
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Figure: Boston housing data: Estimated coefficients in function of the
regularization parameter for Ridge, lasso and NNG methods.
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Regularization and penalization methods
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Figure: Boston housing data: Estimated coefficients in function of the
regularization parameter, for elastic net and Bridge.

I. Gijbels 19th European Young Statisticians Meeting Prague, September 2, 2015 22 / 71



Regularization and penalization methods

Least Absolute Shrinkage and Selection Operator (LASSO) :

min
β

{
(Y− Xβ)T (Y− Xβ) + λ‖β‖1

}
‖β‖1 =

d∑
j=0

|βj | L1-norm

the added term does not need to be an Lp-type of norm nor a combination
of norms of β

it can be any positive-valued function that regularizes the regression
coefficients
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Regularization and penalization methods

in general, one can consider the optimization problem

min
β

{
(Y− Xβ)T (Y− Xβ) + λJ(β)

}
J(·) a given penalty function, that penalizes the resulting estimator in case
the function-value J(β) is too large

in the literature (statistics, but also numerical analysis, engineering, ...)
there are a wealth of regularization techniques that result from including a
penalty term

in general, the penalty term J(β) is of a form J(β) =
d∑

j=1

γjψ(βj)

γj > 0 weights; ψ(·) ≥ 0 a function satisfying some conditions

important properties distinguishing between the various ψ(·) functions:
• the smoothness (mainly differentiability) of the function at zero;

• the convexity or nonconvexity of the function
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Regularization and penalization methods

Smoothed Clipped Absolute Deviation (scad) penalty (Fan (1997),
Antoniadis & Fan (2001), ...) :

ψ′(|β|) = λ

{
I{|β| ≤ λ}+ (aλ− |β|)+

(a− 1)λ
I{|β| > λ}

}
a > 2

the integral of this leads to the penalty
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Figure: SCAD penalty: non-differentiable at zero and nonconvex penalty, for
three values of a.
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Regularization and penalization methods
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Figure: OLS estimates and some other estimates.
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Regularization and penalization methods

frequently-used hyperbolic type of penalty function : ψ(β) =
√
γ + β2

for various values of γ, including γ = 0 when the function reduces to the
absolute value function ψ(β) = |β| (the L1-penalty)

functions are convex and either differentiable at zero (for γ > 0) or
non-differentiable at zero (for γ = 0)
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Figure: Examples of differentiable and non-differentiable convex penalties
(ψ(β) =

√
γ + β2).
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Regularization and penalization methods

another example: ψ(β) = 1− exp(−γβ2)
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Figure: Examples of differentiable nonconvex penalties (ψ(β) = 1− exp(−γβ2)).
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Regularization and penalization methods

J(β) =

d∑
j=1

γjψ(βj) more generally J(β) =

d∑
j=1

γjψ(d
T
j β)

with γj > 0 weights and where dj are given linear operators

if ψ is a convex function, then J forces the regularized solution β̂ of the
considered optimization problem to be such that |dTj β̂| is small

special class of penalty functions : dj finite difference operators

◦ difference operator of order 1: ∆1βj = βj − βj−1

◦ difference operator of order 2: ∆2βj = βj − 2βj−1 + βj−2

◦ difference operator of order k (with k ∈ IN), denoted by dj = ∆k :

∆kβj =

k∑
`=0

(−1)`
(
k

`

)
βj−`

using a finite order difference operator ∆k encourages solutions β̂ with
neighboring coefficients having similar values
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Flexible regression modelling and penalization techniques
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Flexible regression modelling and penalization techniques

flexible univariate regression model and P-splines approximations

Y = µ(X) + ε µ(x) unknown univariate function

without loss of generality: X takes values in [0, 1]

E(ε|X = x) = 0 =⇒ µ(x) = E(Y |X = x)

assume: µ can be approximated by a set of basis functions
B1(·), . . . , Bm(·) :

µ(x) ≈
m∑
j=1

αjBj(x)

aim: estimate the coefficients α = (α1, . . . , αm)T

• examples of basis functions: wavelets, polynomial splines, ...

• crucial choice: number m of basis functions

I. Gijbels 19th European Young Statisticians Meeting Prague, September 2, 2015 31 / 71



Flexible regression modelling and penalization techniques

popular choice of basis functions: B-splines basis functions
{B1(·; q), . . . , Bm(·; q)}

• functions Bj(x; q), are piecewise polynomial functions of degree q;

• (q − 1)-st derivative is a continuous function on [0, 1], but not
differentiable in the points t0, t1, . . . , tK in the interval [0, 1], called
the knot points;

• often one works with normalized B-splines, i.e. satisfying
m∑
j=1

Bj(x; q) = 1, and equidistant knot points

t0 = 0, t1 = 1/K, . . . , tK−1 = (K − 1)/K, tK = 1 in the interval [0, 1]

• with K + 1 equidistant knot points and q the degree of the
polynomial pieces, there are m = K + q basis functions that span the
space of functions on [0, 1] that are splines of degree q
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Flexible regression modelling and penalization techniques

given knots 0 < t1 < · · · < tK < 1; B-splines are polynomial pieces of
degree q joined together at each knot tk
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Figure: Some functions of a B-splines basis.
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Flexible regression modelling and penalization techniques

0 20 40 60 80 100

0
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Figure: Illustration of B-spline constructed smooth curve.

dashed curves: scaled basis functions; heights are the coefficients

solid curve: resulting smooth curve as sum of scaled B-splines

µ(x) ≈
m∑
j=1

αjBj(x; q) m = K + q
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Flexible regression modelling and penalization techniques

• if µ(·) belongs to this space of functions, then µ(x)=
m∑
j=1

αjBj(x; q);

• if µ(·) does not belong to this space, then one needs to deal with a
modeling bias:

•• take a large number of knot points K (increasing as such the flexibility
of the model)

•• control the risk of overfitting (too many parameters) by introducing a
penalty to the least-squares approximation method

with (X1, Y1), . . . , (Xn, Yn) i.i.d. observations from (X,Y )

resulting optimization problem

min
α1,...,αm


n∑

i=1

Yi − m∑
j=1

αjBj(Xi; q)

2

+ λJ(α)


λ > 0 smoothing parameter
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Flexible regression modelling and penalization techniques

commonly-used penalty function: J(β) =

d∑
j=1

γjψ(d
T
j β) with

ψ(β) = β2, dj = ∆k

P-splines optimization problem

min
α1,...,αm


n∑

i=1

Yi − m∑
j=1

αjBj(Xi; q)

2

+ λ

m∑
j=k+1

(∆kαj)
2


=⇒ results in a sparse representation for curves that are smooth on a
large part of the domain (since for smooth curves neighbouring coefficients
of B-splines will be close)

Eilers & Marx (1996), ...

in matrix notation ...
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Flexible regression modelling and penalization techniques

notations:

(X1, X2, · · · , Xn) Y = (Y1, Y2, · · · , Yn)T α = (α1, . . . , αm)T

B =



B1(X1) B2(X1) · · · Bm(X1)
B1(X2) B2(X2) · · · Bm(X2)

...
...

...
B1(Xi) B2(Xi) · · · Bm(Xi)

...
...

...
B1(Xn) B2(Xn) · · · Bm(Xn)


matrix of dim n×m

B(Xi) = (B1(Xi), B2(Xi), · · · , Bm(Xi)) vector of dim 1×m

objective function to be minimized, with respect to α:

n∑
i=1

(Yi −B(Xi)α)2 + λJ(α)
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Flexible regression modelling and penalization techniques

minimize

{
n∑

i=1

(Yi −B(Xi)α)2 + λJ(α)

}
with respect to α

min
α

{
(Y−Bα)T (Y−Bα) + λαTDT

kDkα
}

matrix Dk for the k-th order difference operator :∑m
j=k+1(∆

kαj)
2 = αTDT

kDkα

matrix Dk = a matrix of dimension (m− k)×m

example: for a B-spline basis of degree 2, and 5 knots (i.e. K = 4),
m = 6, and the matrix D2 is a matrix of dimension 4× 6

D2 =


1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
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Flexible regression modelling and penalization techniques

min
α

{
(Y−Bα)T (Y−Bα) + λαTDT

kDkα
}

solution to the optimization problem:

penalized regression estimator:

α̂ = (α̂1, . . . , α̂m)T

estimator of the function µ:

µ̂(x) =

m∑
j=1

α̂jBj(x; q)
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Flexible regression modelling and penalization techniques

extension to a generalized linear model

Y : response variable X: covariate (univariate)

cond. distrib. of Y given X = x is from an exponential family distr.

fY |X(y|x) = exp
(
yθ(x)−b(θ(x))

φ + c(yi, φ)
)

b(·) and c(·) known functions; φ : known scale parameter

θ(·) unknown function

E(Y |X = x) = b′(θ(x)) = µ(x) Var(Y |X = x) = φ b′′(θ(x))

g(µ(x)) = η(x) g the link function

η(·) the predictor function, to be estimated

generalized linear models: η(x) = a linear function of x
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Flexible regression modelling and penalization techniques

Examples

• Normal regression with additive errors: fY |X(y|x) ∼ N
(
µ(x);σ2

)
link function: g(t) = t (identity) predictor fct η(x) = µ(x)

• Logistic regression: fY |X(y|x) ∼ Bernoulli (1;µ(x))

0-1 response type of variable Y µ(x)= conditional probab.

link fct: g(t) = log
t

1− t
(logit) predictor fct η(x) = log µ(x)

1−µ(x)

• Poisson regression: fY |X(y|x) ∼ Poisson (µ(x))

counts type of r.v. Y µ(x)= Poisson intensity function

link function: g(t) = log(t) predictor fct η(x) = log (µ(x))
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Flexible regression modelling and penalization techniques

regression analysis:

from observation (X1, Y1), (X2, Y2), . . . , (Xn, Yn)

estimate the predictor function η(·)
• standard parametric model: η(x) = η(x;α)

ex.: generalized linear models; η(x;α) a function linear in α

• nonparametric estimation: several techniques, ..., e.g. penalization
techniques

η(x) ≈
m∑
k=1

αkBk(x)
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Flexible regression modelling and penalization techniques

objective function to be maximized:

maximizeη∈function space

{
1

n

n∑
i=1

`(Yi, η(Xi))− λJ(η)

}

` =log-likelihood J(·) is a roughness functional (penalty)

1st term: discourages the lack of fit of η to the data
2nd term: penalizes the roughness of η
λ > 0: smoothing parameter controlling trade-off between 2 terms

nonparametric setting: η(x) ≈
m∑
k=1

αkBk(x), with m large enough

η(Xi) ≈ B(Xi)α

penalized log-likelihood estimator:

maximizeα

{
1

n

n∑
i=1

`(Yi,B(Xi)α)− λJ(α)

}
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Flexible regression modelling and penalization techniques

maximizeα

{
1

n

n∑
i=1

`(Yi,B(Xi)α)− λJ(α)

}

• how to do the optimization of the penalized log-likelihood ?

• algorithm for carrying out the optimization ?

• statistical properties and asymptotic analysis of the penalized
maximum likelihood estimators of α, of η(·) and of µ(·), ... ?

• bias, variance of the estimators, consistency + rate of convergence,
asymptotic distributional results, ...

• finite-sample performance ?

Antoniadis, G. & Nikolova (2011), Li et al. (2012), ...
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Flexible regression modelling and penalization techniques

flexible multiple regression models and P-splines approximations

Y response variable X1, . . . Xd covariates

a multiple linear regression model, Y = β0 + β1X1 + . . .+ βdXd + ε,
assumes a linear influence of each of the covariates on the response
variable

• additive regression model

influence of Xj on Y is modeled via an unknown univariate function fj :

Y = f0 +

d∑
j=1

fj(Xj) + ε , with E (fj(Xj)) = 0

(Y1, X11, . . . , X1d), . . . , (Yn, Xn1, . . . , Xnd) i.i.d. observations from
(Y,X1, . . . , Xd) satisfying the additive model

how to obtain estimators for the d unknown functions ?
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Flexible regression modelling and penalization techniques

f j = (fj(X1j), . . . , fj(Xnj))
T the column vector of all fj function values

(evaluated at the observed values of Xj)

P-splines estimation of the functions fj can be done as follows

Step 1: Initialization step: put f̂0 = n−1
n∑

i=1

Yi, and f̂ j = 0, for

j = 1, . . . , d;

Step 2: for j = 1, . . . , d, calculate the residuals ej = Y−
∑̀
6=j

f̂ `, and

use univariate P-splines regression applied to ej , to estimate f j ;

Step 3: Repeat Step 2 until convergence.

=⇒ consistent estimation of f1, . . . ,fd

Eilers & Marx (2002), Antoniadis, G. & Verhasselt (2012b)
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Flexible regression modelling and penalization techniques

• varying coefficient regression model

multiple linear regression model: Y = β0 + β1X
(1) + . . .+ βdX

(d) + ε

complex data

flexible modelling −→ varying coefficient regression model:

Y (t) = β0(t) + β1(t)X
(1)(t) + . . .+ βd(t)X

(d)(t) + ε(t)

(t ∈ T = [0, T ])

ε(t) independent of (X(1)(t), . . . , X(d)(t), t)

Hastie & Tibshirani (1993), Hoover et al. (1998), Fan & Zhang (2008),
Lu et al. (2008), Wang et al. (2008), ...,
Antoniadis, G. & Verhasselt (2012a), Andriyana (2014), ...
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Flexible regression modelling and penalization techniques

Y (t) = β0(t) + β1(t)X
(1)(t) + . . .+ βd(t)X

(d)(t) + ε(t)

= X(t)Tβ(t) + ε(t)

where X(t) =
(
X(0)(t), X(1)(t), . . . , X(d)(t)

)T
covariate vector at time t

with X(0)(t) ≡ 1

β(t) = (β0(t), β1(t), . . . , βd(t))
T

vector of (d+ 1) unknown univariate regression coefficients at time t

β0(t) is the baseline effect

assume that ε(t) is a mean zero stochastic process at time t

first aim: estimate the mean regression function

E(Y (t)|X(t), t) = β0(t) + β1(t)X
(1)(t) + . . .+ βd(t)X

(d)(t)
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Flexible regression modelling and penalization techniques

observational setting: longitudinal data setup

n independent subjects/individuals

for each individual i: measurements repeated over a time period

measurements at time points ti1, . . . , tiNi

Ni different measurements for response and all explanatory variables:

Y (tij) = Yij

X(k)(tij) = X
(k)
ij k = 1, . . . , d =⇒ X(tij)

not.
= Xij = (X

(0)
ij , . . . , X

(d)
ij )T

total number of observations over all individuals:

N =

n∑
i=1

Ni

I. Gijbels 19th European Young Statisticians Meeting Prague, September 2, 2015 49 / 71



Flexible regression modelling and penalization techniques

example: CD4 data example

the data are a subset from the Multicenter AIDS Cohort Study (Kaslow et
al. (1987))

contain repeated measurements of physical examinations, laboratory
results, CD4 cell counts and CD4 percentages of 283 homosexual men who
became HIV-positive between 1984 and 1991

unequal numbers of repeated measurements and different measurement
times for each individual

the number of repeated measurements ranged from 1 to 14, with a median
of 6 and mean of 6.57

the number of distinct time points was 59
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Flexible regression modelling and penalization techniques

response variable :

Y (t) = CD4 percentage at time t after infection

covariates:

◦ X
(1)
i the smoking status of the i-th individual (1 or 0 if the individual

ever or never smoked cigarettes)

◦ X
(2)
i the centered age at HIV infection for the i-th individual

◦ X
(3)
i the centered pre-infection CD4 percentage

aim: try to evaluate the mean effects of cigarette smoking, pre-HIV
infection CD4 cell percentage and age at HIV infection on the CD4
percentage after infection response:
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Flexible regression modelling and penalization techniques

the conditional mean function

E(Y (t)|X(t), t) = β0(t) + β1(t)X
(1)(t) + . . .+ βd(t)X

(d)(t)

longitudinal data:
(
tij , Yij , X

(1)
ij , . . . , X

(d)
ij

)
i = 1, . . . , n, j = 1, . . . , Ni N =

n∑
i=1

Ni

estimation of the (d+ 1) unknown univariate regression functions βk(t),
k = 0, . . . , d

P-spline estimator for the regression coefficient function βk(·)

Lu, Zhang & Zhu (2008), Wang & Huang (2008), ...
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Flexible regression modelling and penalization techniques

E(Y (t)|X(t), t) = β0(t) + β1(t)X
(1)(t) + . . .+ βd(t)X

(d)(t)

suppose: each unknown function βk(t), k = 0, . . . , d, can be approximated
by a B-spline basis expansion

βk(t)≈αk1Bk1(t; νk) + . . .+ αkmk
Bkmk

(t; νk) =

mk∑
`=1

αk`Bk`(t; νk)

= αT
kBk(t; νk)

αk = (αk1, . . . , αkmk
)T Bk(t; νk) = (Bk1(t; νk), . . . , Bkmk

(t; νk))
T

mk = uk + νk uk + 1 = number of knot points

where {Bk`(·; νk) : ` = 1, . . . , uk + νk = mk} is the νk-th degree B-spline
basis with uk + 1 equidistant knots for the k-th component
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Flexible regression modelling and penalization techniques

βk(tij) ≈
mk∑
`=1

αk`Bk`(tij ; νk)

the P-spline estimates of the regression coefficients αk` are obtained by
minimizing S(α) with respect to α = (αT

0 , . . . ,α
T
d )

T ∈ IRmtot×1, where

αk = (αk1, . . . , αkmk
)T and mtot =

d∑
k=0

mk:

S(α) =

n∑
i=1

1

Ni

Ni∑
j=1

(
Yij −

d∑
k=0

mk∑
`=1

αk`Bk`(tij ; νk)X
(k)
ij

)2
+

d∑
k=0

λkα
T
kD

T
dk
Ddk

αk

dk is the differencing order for the k-th component

λk > 0 are the (d+ 1) smoothing parameters
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Flexible regression modelling and penalization techniques

S(α) =

n∑
i=1

1

Ni

Ni∑
j=1

(
Yij −

d∑
k=0

mk∑
`=1

αk`Bk`(tij ; νk)X
(k)
ij

)2
+

d∑
k=0

λkα
T
kD

T
dp
Ddk

αk

=

n∑
i=1

(Yi −Uiα)TWi(Yi −Uiα) +αQλα

Yi = (Yi1, . . . , YiNi)
T

B(t) =

 B01(t; q0) . . . B0m0(t; q0) 0 . . . 0 0 . . . 0

0 . . . 0
. . . 0 . . . 0

0 . . . 0 0 . . . 0 Bd1(t; qd) . . . Bdmd(t, qd)


UT

ij = XT
ijB(tij) ∈ IR1×mtot Xij =

(
1, X(1)(tij), . . . , X

(d)(tij)
)T

Ui = (UT
i1, . . . ,U

T
iNi

)T ∈ IRNi×mtot

Wi = diag
(
N−1

i , . . . , N−1
i

)
∈ IRNi×Ni (a diagonal matrix with Ni times

N−1
i on the diagonal)

Qλ = diag (λ0D
T
d0Dd0 , . . . , λdD

T
ddDdd) ∈ IRmtot×mtot (a block diagonal matrix

with the matrices λkD
T
dkDdk on the diagonal)
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Flexible regression modelling and penalization techniques

S(α) =

n∑
i=1

(Yi −Uiα)TWi(Yi −Uiα) +αQλα

if
n∑

i=1

UT
i WiUi +Qλ is invertible then S(α) has a unique minimizer

α̂ =
( n∑
i=1

UT
i WiUi +Qλ

)−1
n∑

i=1

UT
i WiYi

where α̂ = (α̂T
0 , . . . , α̂

T
d )

T and α̂k = (α̂k1, . . . , α̂kmk
)T for k = 0, . . . , d

the P-spline estimate of β(t) is then

β̂(t) = B(t)α̂ = (β̂0(t), . . . , β̂d(t))
T with β̂k(t) =

mk∑
`=1

α̂k`Bk`(t; νk)

I. Gijbels 19th European Young Statisticians Meeting Prague, September 2, 2015 56 / 71



Flexible regression modelling and penalization techniques

theoretical results are established for the case that the number of knots
uk + 1 (and thus mk = uk + νk) grows with n

βk(·) is not a spline function itself, but can be approximated by a spline
function

theoretical results

• consistency result (+ rate)

‖β̂k − βk‖L2
=


∫
T

(
β̂k(t)− βk(t)

)2
dt


1/2

= OP

( 1
n2

n∑
i=1

1

Ni

)q/(2q+1)


• asymptotic normality
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Flexible regression modelling and penalization techniques
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Figure: Aids data. Fitted (a) baseline effect; (b) coefficient of pre-infection CD4.
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Figure: Aids data. Fitted CD4 percentage for person with minimum (−27.6841),
median (−0.3841) and maximum (26.3159) centered pre-infection CD4.
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P-splines variable selection in flexible regression models

Outline

1 Introduction

2 Least-squares and Ridge regression

3 Regularization and penalization methods

4 Flexible regression modelling and penalization techniques

5 P-splines variable selection in flexible regression models

6 Quantile regression in flexible models
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P-splines variable selection in flexible regression models

if d is large, we need to select also which variables have an important
influence =⇒ variable selection

simultaneous estimation and variable selection

• estimation consistency:

β̂k − βk → 0, asn→ ∞ (e.g. in L2 sense) + rate

• variable selection consistency:
suppose that the true βk = 0; then we want

P
{
β̂k 6= 0

}
→ 0, asn→ ∞

we discuss briefly a variable selection method for additive models and for
varying coefficient models
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P-splines variable selection in flexible regression models

• additional regression models

f̂ initj (Xj) an initial estimator of fj(Xj)

nonnegative garrote variable selection method then consists of finding the
nonnegative garrote shrinkage factors cj via the minimization problem: min

c1,...,cd


n∑

i=1

Yi − f̂ init0 −
d∑

j=1

cj f̂
init
j (Xij)

2

+ λ

d∑
j=1

cj


subject to 0 ≤ cj , for j = 1, . . . , d

denote by (ĉ1, . . . , ĉd), the solution to this minimization problem

the associated nonnegative garrote estimator for the function fj is given by

f̂NNG
j (·) = ĉj f̂

init
j (·)

Yuan (2007), Cantoni et al. (2011) and Antoniadis et al. (2012b), Huang
et al. (2010) and Marra and Wood (2011)....
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P-splines variable selection in flexible regression models

• varying coefficient models variable selection for the varying coefficient
model, based on longitudinal data

obtain nonnegative garrote shrinkage factors ĉ = (ĉ1, . . . , ĉd) from the
optimization problem min

c1,...,cd


n∑

i=1

1

Ni

Ni∑
j=1

Yij − β̂init0 (tij)−
d∑

p=1

X
(p)
ij cpβ̂

init
p (tij)

2

+ λ

d∑
p=1

cp


subject to 0 6 cp , for p = 1, . . . , d

β̂initp (·) is an initial estimator for the regression coefficient function βp(·)

Antoniadis et al. (2012a) and Verhasselt (2014)

Wang et al. (2008) and Xue and Qu (2012), ...

=⇒ grouped regularization techniques
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Quantile regression in flexible models

Outline

1 Introduction

2 Least-squares and Ridge regression

3 Regularization and penalization methods

4 Flexible regression modelling and penalization techniques

5 P-splines variable selection in flexible regression models

6 Quantile regression in flexible models
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Quantile regression in flexible models

varying coefficient models

Y (t) = β0(t) + β1(t)X
(1)(t) + . . .+ (t)βd(t)X

(d) + ε(t)

qτ
(
ε(t)|X(1)(t), . . . , X(d)(t)

)
= 0

ε(t) independent of (X(1)(t), . . . , X(d)(t), t)

second aim: estimate τth conditional quantile function (0 < τ < 1)

qτ (Y (t)|X(t), t) = β0(t) + β1(t)X
(1)(t) + . . .+ βd(t)X

(d)(t)
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Quantile regression in flexible models

the conditional quantile

qτ (Y (t)|X(t), t) = β0(t) + β1(t)X
(1)(t) + . . .+ βd(t)X

(d)(t)

can be approximated via normalized B-splines

unknown regression coefficient functions βk(·): can be of different degree
of smoothness; B-splines of degree νk to approximate the coefficient
function βk(t), for k = 0, . . . , d:

βk(t)≈αk1Bk1(t; νk) + . . .+ αkmk
Bkmk

(t; νk) =

mk∑
`=1

αk`Bk`(t; νk)

= αT
kBk(t; νk)

αk = (αk1, . . . , αkmk
)T Bk(t; νk) = (Bk1(t; νk), . . . , Bkmk

(t; νk))
T

mk = uk + νk uk + 1 = number of knot points
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Quantile regression in flexible models

estimation of global vector of all unknown coefficients

α =
(
αT

0 , . . . ,α
T
p

)T
quality of the fit measured via the goodness-of-fit quantity

n∑
i=1

1

Ni

Ni∑
j=1

ρτ

(
Yij −

p∑
k=0

mk∑
`=1

αk`Bk`(tij ; νk)X
(k)
ij

)

reducing the modelling bias: use a large number of basis functions

but this leads to overfitting

... prevent this to happen by adding a penalty term
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Quantile regression in flexible models

... adding a penalty term: minimize

n∑
i=1

1

Ni

Ni∑
j=1

ρτ

(
Yij −

d∑
k=0

mk∑
`=1

αk`Bk`(tij ; νk)X
(k)
ij

)
+

d∑
k=0

mk∑
`=dk+1

λk
∣∣∆dkαk`

∣∣γ
where γ > 0

λk > 0, k = 0, . . . , d : smoothing parameters

∆dk = the dkth order differencing operator of the kth variable, with
dk ∈ IN

denote by α̂k the resulting P-splines estimator for the vector αk,
k = 0, . . . , d

estimator for the τ th conditional quantile function?
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Quantile regression in flexible models

qτ (Y (t)|X(t), t) = β0(t) + β1(t)X
(1)(t) + . . .+ βd(t)X

(d)(t)

≈
d∑

k=0

mk∑
`=1

αk`Bk`(tij ; νk)X
(k)
ij

P-splines estimator of the conditional regression quantile :

q̂τ (Yij |Xij , tij) =

d∑
k=0

mk∑
`=1

α̂k`Bk`(tij ; νk)X
(k)
ij

important issues :

• choices of γ, λk’s, ....

• how to solve the optimization problem (algorithms, ...)

• can we show consistency, asymptotic distributional results ?

Andriyana et al. (2014, 2015), ...
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Quantile regression in flexible models
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Figure: Estimated quantile curves: τ = 0.1 (dashed curves), τ = 0.5 (solid
curves) and τ = 0.9 (dotted curves) for (left) median and (right) maximum of
covariate values.

median covariate case: nonsmoking, 32.6 years old patient, with
pre-infection CD4 of 42.3%

τ = 0.5: estimated to have a CD4 percentage of 24.37% after 6 years
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Quantile regression in flexible models

many issues not touched upon ...

• what if d >> n ?

• what if the variance/dispersion of the error term cannot assumed to
be constant (heteroscedasticity)?

can we estimate this heteroscedasticity in a flexible manner ?

• what about robust methods for variable selection ?

• how to prevent estimated quantile curves of different orders to cross ?

• what if data are not i.i.d. ?

• how to deal with functional data?
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