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Outline 

•  Motivating case study: the effect of caesarean section on 
the Apgar score 

•  Propensity score methods for causal inference  
•  Existing studies with multilevel data 
•  Simulations design and results 
•  Case study results 
•  Concluding remarks 
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Motivating case study (1/4) 

•  Estimation of the causal effect of caesarean section 
(treatment) versus natural delivery (control) on a widely 
employed indicator of the clinical state of newborns, the 5-
minute Apgar score (AS). 

•  The AS is a composite measure of breathing effort, heart 
rate, muscle tone, reflexes and skin color. Each item is 
scored 0, 1, or 2, and thus the total score ranges from 0 to 
10.  

•  Infants with a score of ≥ 7 are usually considered normal 
(American Academy Pediatrics 2006). Low AS is strongly 
associated with abnormal future development of the child 
and infant mortality risk. 
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Motivating case study (2/4) 

•  Y = 1 if AS < 7 (“low” AS), = 0 otherwise.  
•  Our dataset covers all hospitalized deliveries Sardinia, 

years 2010 and 2011. The source is the official form on the 
birth event (known as CedAP). 

•  We focus on the subset of non-complicated 
pregnancies: women delivering at 32 or more weeks of 
gestational age with a singleton and living infant in vertex 
(head-down) position, without birth anomalies. We further 
restrict the sample to nulliparous mothers aged between 
15 and 44. Our working sample includes 14,757 
observations clustered in 20 hospitals. 
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Motivating case study (3/4) 

•  Unbalanced 
structure 
 
•  Proportion 
of treated < than 
proportion of  
control units 
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Motivating case study (4/4) 

•  Selection mechanism: what are the factors influencing 
caesarean section? 

•  Individual-level: maternal age and education, infant 
weight, gestational age, pathologies during pregnancy. 

•  Hospital-level: hospital practices and culture, managerial 
preferences and guidelines, volume, type (teaching/not 
teaching), etc. (Caceras et al, 2013; Bragg et al, 2010). 
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Potential outcome framework 

•  Consider a group of units, indexed by i = 1,…,N. 
•  Let Ti be a binary treatment indicator: = 1 if mother i 

delivered with caesarean section (treated), = 0 otherwise. 
•  Let Yi(1) and Yi(0) denote the potential outcomes on the 

mother’s infant (Apgar score). 
•  Causal estimand of interest: ATT = E[Y(1) - Y(0) | T = 1]. 
•  Yi(0) is always unobserved for Ti = 1. 
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Propensity score (PS) methods 

•  Identitying assumptions: 
–  Y(1), Y(0) ⊥ T  |  X (unconfoundedness) 
–  0 < P (T=1| X) < 1 (overlap) 
 

•  PS: e(X) ≡ Pr{T = 1|X} = E{T|X}. 
•  Rosenbaum and Rubin (1983): 

–  the propensity score is a balancing score, i.e., X ⊥T | e(X), 
–  if unconfoundedness holds, then Y(1), Y(0) ⊥ T | e(X). 
 

•  These results justify matching / stratification / weighting on 
e(X) instead than on X. 
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Clustered data structures 

•  Clustered data structures are very common in many fields 
(patients into hospitals, individuals into geographical areas, 
students into schools) 

•  PS methods have been developed and applied in the 
context of unstructured data. 

•  In clustered data bias can arise from omitted individual and/
or cluster-level confounders. 

•  How should we apply PS methods to these data? 
•  How can we use knowledge on clusters’ memberships? 
•  Few methodological and applied works exist in the case of 

clustered data. 
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Existing studies with clustered data 

•  Arpino and Mealli (2011)  
–  Show the benefit of using random or fixed effects models for the 

estimation of the propensity score to reduce the bias due to 
unmeasured cluster-level variables in PS matching (PSM). 

–  Focus on high number of small clusters. 

•  Thoemmes and West (2011) and Li et al (2013) 
considered stratification and re-weighting using PS, 
respectively. 
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Our contribution 

•  Unbalanced data structure with both big and small 
clusters. 

•  Realistic simulated dataset that mimic real data. 
•  We compare different approaches: 

Strategy  PS model Matching criteria 

A Single-level logit  Pooled 

B Single-level logit (pure) Within-cluster 

C Single-level logit “Preferential” within-cluster 

D Random-effect logit Pooled  

E Fixed-effect logit Pooled 
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Approach A (pooled matching) 

•  It ignores the clustered structure in both PS estimation:  

 

•  and matching 

•  We use one-to-one nearest neighbor matching within a 
caliper of 0.2 standard deviation of the estimated PS (both 
with and without replacement). 

(2)    }ˆ2.0ˆˆminˆ:{
0

0 ejkrjIjkjkrj eeeIjkA σ<−=∈ʹ′= ʹ′
∈ʹ′

ʹ′

(1)      )(logit 0 βα ijij Xe +=

12	  



Arpino, Cannas 
02/08/2015 - Prague 
 

Estimating the ATT 

•  After the matching algorithm has been applied on each 
treated unit, the matched dataset is built: 

•  and the ATT is estimated on this set using: 
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Approach B (match within) 

•  Uses the same PS model than method A (2) but adjusts for 
clustering in the implementation of the matching that is 
forced to be within-cluster: 

 
•  Within-cluster matching automatically guarantees that all 

cluster-level variables are perfectly balanced. But balance of 
individual-level variables could be worse than with approach 
A. Also the no. of unmatched units will be higher. 
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Approach C (preferential-within) 

•  Tries to combine the benefits of approaches A and B. 

•  Starts by searching control units within-cluster (according to 
(5)). If none is found, control units are searched in other 
clusters (according to (2)).  

•  It is expected to improve the balancing of cluster-level 
variables with respect to approach A and reduces the loss of 
units compared to approach B. 
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Approaches D and E 

•  They keep clustering into account in the estimation of the 
propensity score: 

    by estimating cluster-specific random (D) or fixed (E) 
intercepts. 
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Simulation studies 

•  Mimic the real dataset in: no. of clusters, sample sizes, X 
variables, association between X, T and Y. 

•  We introduce an unobserved hospital-level confounder, H 
and consider different effect sizes in the treatment 
equation (small, medium, high). 

•  We apply all methods A-E (with and without replacement) 
omitting the hospital-level simulated variable. 

•  500 replicates. 
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Simulation results:  
w/o replacement, small H effect 

METRIC	   PSM	  Method	  

Raw	   A	   B	   C	   D	   E	  

%	  of	  Unmatched	   0	   8.53	   10.45	   2.50	   9.21	   9.17	  

Balance	  X	   13.01	   1.01	   1.37	   1.22	   1.11	   0.93	  

Balance	  H	   17.94	   18.09	   0	   4.22	   1.21	   0.92	  

Bias	  ATT	  (%)	   57.42	   18.33	   23.41	   10.93	   16.41	   16.51	  

MSE	   6.51	   2.98	   3.28	   2.73	   2.87	   2.90	  

18	  



Arpino, Cannas 
02/08/2015 - Prague 
 

Simulation results:  
w/o replacement, high H effect 

METRIC	   PSM	  Method	  

Raw	   A	   B	   C	   D	   E	  

%	  of	  Unmatched	   0	   9.19	   18.19	   2.74	   16.90	   16.88	  

Balance	  X	   12.75	   1.33	   2.61	   1.92	   2.36	   2.33	  

Balance	  H	   53.03	   53.91	   0	   20.37	   2.10	   1.81	  

Bias	  ATT	  (%)	   65.88	   2.31	   23.71	   0.15	   6.02	   6.92	  

MSE	   7.50	   2.30	   3.40	   2.54	   2.55	   2.57	  
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Simulation results:  
with replacement, small H effect 

METRIC	   PSM	  Method	  

Raw	   A	   B	   C	   D	   E	  

%	  of	  Unmatched	   0	   0.01	   0.90	   0.01	   0.01	   0.01	  

Balance	  X	   13.01	   0.95	   1.64	   1.63	   0.93	   0.94	  

Balance	  H	   17.90	   18.49	   0	   0.25	   0.88	   1.23	  

Bias	  ATT	  (%)	   57.42	   9.05	   3.67	   0.61	   8.36	   8.80	  

MSE*1000	   6.52	   3.52	   3.52	   3.33	   3.45	   2.50	  
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Simulation results:  
with replacement, high H effect 

METRIC	   PSM	  Method	  

Raw	   A	   B	   C	   D	   E	  

%	  of	  Unmatched	   0	   0.01	   0.10	   0.01	   0.01	   0.01	  

Balance	  X	   12.75	   1.15	   1.93	   1.90	   1.08	   1.09	  

Balance	  H	   53.03	   53.47	   0	   0.62	   0.78	   0.79	  

Bias	  ATT	  (%)	   65.88	   24.24	   2.28	   3.78	   8.72	   7.78	  

MSE*1000	   7.56	   4.22	   3.65	   3.82	   3.70	   3.70	  
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Case study 
METRIC	   PSM	  Method	  

Raw	   A	   B	   C	   D	   E	  

%	  of	  Unmatched	   0	   0	   0.1	   0	   0	   0	  

Balance	  X	   14.8	   0.91	   1.97	   1.98	   1.39	   1.38	  

LOW	  APGAR	  (‰)	  

Caesarean	  secCon	   10.9	   10.9	   11.0	   10.9	   10.9	   10.9	  

Natural	  delivery	   5.2	   9.1	   9.6	   9.7	   9.9	   9.9	  

Difference	  (ATT*1000)	   5.75	   2.80	   1.40	   1.23	   1.02	   1.07	  

(EsCmated)	  SE	  of	  ATT	   1.46	   1.80	   0.47	   0.47	   1.84	   1.96	  
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Concluding remarks 

•  In general, methods using information on clusters have better 
performance: 
–  matching without replacement: C,D,E have similar performance 
–  matching with replacement: B,C better than D,E 
–  B better performance than C when confounding is very strong 

•  How to choose among them? Data structure: 
–  B and C perform well here: (majority of) large clusters of unequal size 
–  D, E perform well here but also with small clusters (Arpino and Mealli, 

2011) 

•  Method C seems attractive when some clusters are small as 
it greatly reduces the number of unmatched units. 
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A	  note	  on	  es3mated	  SE	  

•  For	  unclustered	  data:	  
-‐  if	  treatment	  randomized:	  
	  	  	  	  	  classic	  se	  of	  difference	  in	  means	  
-‐  Otherwise	  correc9ons	  are	  needed	  for:	  
	  	  	  	  a)	  uncertainty	  in	  ps	  es3ma3on	  	  
	  	  	  b)	  uncertainty	  due	  to	  matching	  (Abadie,	  Imbens,	  2006)	  
	  	  
•  For	  clustered	  data	  no	  theore3cal	  results	  are	  available	  

25	  



Arpino, Cannas 
02/08/2015 - Prague 
 

A	  note	  on	  number	  of	  dropped	  units	  

•  Matching	  with	  replacement:	  	  
	  	  drops	  B	  >	  drops	  A	  =	  drops	  C	  	  	  

•  No	  longer	  true	  without	  replacement:	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Unit	  	  	  	  	  	  H	  	  	  	  T	  	  	  ps	  	  	  sd(ps)=0.18	  	  

[1,]	  	  	  	  	  	  1	  	  	  	  	  0	  	  	  0.10	  
[2,]	  	  	  	  	  	  1	  	  	  	  	  1	  	  	  0.10	  
[3,]	  	  	  	  	  	  1	  	  	  	  	  0	  	  	  0.20	  
[4,]	  	  	  	  	  	  1	  	  	  	  	  1	  	  	  0.30	  
[5,]	  	  	  	  	  	  2	  	  	  	  	  0	  	  	  0.39	  
[6,]	  	  	  	  	  	  2	  	  	  	  	  1	  	  	  0.40	  
[7,]	  	  	  	  	  	  2	  	  	  	  	  0	  	  	  0.60	  
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