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Genome-wide association studies (GWAS)
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Model selection problem

� Consider the linear regression model of form y = Xβ + z, with
experiment matrix X ∈M(n, p) (with centered, `2 normalized
columns), observation vector y and z ∼ N(0, σ2In)

� We assume that the number of nonzero coefficients in β is
small comparing to p (i.e. β is sparse)

� The task is to find the support of β, which corresponds to
finding relevant explanatory variables
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Existing penalized methods: LASSO

� LASSO is defined as solution to

arg min
b

{
1

2

∥∥y −Xb∥∥2
2
+ λL‖b‖1

}
, (LASSO)

with λL > 0 being tuning parameter

� General rule: the reduction of λL results in identification of more
elements from the true support (true discoveries) but at the same
time it produces more falsely identified variables (false discoveries)

� Choosing of λL is challenging - it is not obvious which sparsity
level could be perceived as proper
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Existing penalized methods: SLOPE

� SLOPE is defined as solution to

arg min
b

1

2

∥∥y −Xb∥∥2
2
+ σ

p∑
i=1

λi
∣∣b∣∣

(i)
, (SLOPE)

where
∣∣b∣∣

(1)
≥ . . . ≥

∣∣b∣∣
(p)

are ordered magnitudes of coefficients of b and

λ1 ≥ . . . ≥ λp ≥ 0 is the sequence of tuning parameters

� The above optimization problem is convex and could be efficiently solved
even for large design matrices

� The method reduces to LASSO, when λ1 = . . . = λp
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False discovery rate (FDR) control

� Let β̃ be estimate of β

� We define:

� the number of all discoveries, R :=
∣∣{i : β̃i 6= 0

}∣∣
� the number of false discoveries, V :=

∣∣{i : βi = 0, β̃i 6= 0
}∣∣

� false discovery rate, FDR := E
[

V
max{R,1}

]

� The goal is to construct the method for which tuning
parameters could be chosen (in explicit way) such as the
condition FDR ≤ q is met, for predefined q ∈ (0, 1)
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FDR control with SLOPE

� In orthogonal situation, i.e. when X>i Xj = 0 for i 6= j, the
condition FDR ≤ q is theoretically provided when λ sequence
is defined as

λi := Φ−1
(

1− i · q
2p

)

� The heuristic procedure for choosing smoothing parameters
was derived for the near orthogonal situation, which was
modeled by assuming that entries of X are realizations of
independent, zero-mean normal distributions

� It turns out that the mentioned heuristic works well for many
other zero-mean distributions
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The structure of GWAS data

� Tendency of strong correlation between nearly located columns
while columns of distant indices are generally weakly correlated

�  
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Figure: Histogram of correlation matrix (absolute values) for 100 predictors
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SLOPE in GWA studies
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(a) Norm. dist. entries, n = p = 1000
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New strategy: selecting groups
� Let I = {I1, . . . , Im} be partition of {1, . . . , p} and denote li := |Ii| for
i = 1, . . . ,m

� Consider the linear regression model with m groups of form

y =

m∑
j=1

XIjβIj + z

� We define truly relevant group by condition ‖XIjβIj‖2 > 0

� The task is to identify the relevant group instead of individual predictors

� STANDARDIZATION: XIj could be decomposed as XIj = UjRj , where

U>j Uj = I, we can define β̃ :=
(
(R1βI1)

>, . . . , (RmβIm)>
)>

,

β̃Ĩj := RjβIj . Then

‖XIjβIj‖2 > 0⇐⇒ ‖Uj β̃Ĩj‖2 > 0⇐⇒ ‖β̃Ĩj‖2 > 0
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β̃Ĩj := RjβIj . Then

‖XIjβIj‖2 > 0⇐⇒ ‖Uj β̃Ĩj‖2 > 0⇐⇒ ‖β̃Ĩj‖2 > 0
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Group false discovery rate (gFDR) control

� Let β̃ be estimate of β and I = {I1, . . . , Im} be partition of
{1, . . . , p}

� We define:

� the number of all discovered groups,

gR :=
∣∣{i : ‖XIi β̃Ii‖2 > 0

}∣∣
� the number of falsely discovered groups,

gV :=
∣∣{i : ‖XIiβIi‖2 = 0, ‖XIi β̃Ii‖2 > 0

}∣∣
� group false discovery rate, gFDR := E

[
gV

max{gR, 1}

]

� The goal is to control gFDR at assumed level q ∈ (0, 1)
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Group SLOPE (gFDR)

� Let I = {I1, . . . , Im} be partition of {1, . . . , p}, li = |Ii| and
λ1 ≥ . . . ≥ λm ≥ 0

� We introduce the group SLOPE estimate, defined as a solution to

arg min
b

{
1

2

∥∥∥y −Xb∥∥∥2
2
+ σ

m∑
i=1

λi

√
l(i)
∥∥bI(i)∥∥2}, (gSLOPE)

where
√
l(i)
∥∥bI(i)∥∥2 is the ith largest coefficient of the vector(√

l1
∥∥bI1∥∥2, . . . ,√lm∥∥bIm∥∥2)>

� gSLOPE is solution to convex optimization problem which could be efficiently
solved (by proximal gradient method)
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SLOPE

LASSO

gSLOPE

gLASSO

λ1 = . . . = λp

l1 = . . . = lm = 1

l1 = . . . = lm = 1

λ1 = . . . = λm
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Theorem (gFDR control under orthogonal case)

Consider linear regression model with m groups, in which X is experiment
matrix satisfying X>IiXIj = 0, for any i 6= j. Let m0 denote the number of
truly irrelevant groups. Apply following steps:

� redefine X, I, {li}mi=1, p by applying the standardization

� fix q ∈ (0, 1)

� define λ = [λ1, . . . , λm]>, for λi := max
j=1,...,m

{
1√
lj
F−1χlj

(
1− q·i

m

)}
, where

Fχli
is cumulative of chi distribution with li degrees of freedom

� β̃ := arg min
b

{
1
2

∥∥∥y −Xb∥∥∥2
2
+ σ

∑m
i=1 λi

√
l(i)
∥∥bI(i)∥∥2};

Then, it holds

gFDR ≤ q · m0

m
.
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Results for near orthogonal situation

Our main goal was to find procedure for generating tuning parameters for
gSLOPE in situation when explanatory variables included to different groups
are weakly correlated (as in GWAS case).

� Basing on heuristics for SLOPE, we have derived the procedure for
gSLOPE in situation when entries of design matrix are realizations of
independent, zero mean, normal distributions and all groups have the
same sizes

� For arbitrary group sizes we considered two approaches: the conservative
(giving gFDR significantly lower than assumed) and the liberal (giving
gFDR slightly above the target level but identifying more truly relevant
groups than conservative)

� For the fixed sequence of tuning parameters, we have developed the
iterative version of gSLOPE, allowing the estimation of σ2
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GWAS experiment

� We have analyzed the genetic data collected for 5402 individuals and
16427 genetic regions located in chromosome 1

� Columns of the experiment matrix were divided into groups by using the
hierarchical clustering algorithm (HCA)

� As a results we achieved 1358 groups, with average group size close to 12

� We have performed 200 iterations for each sparsity level from the set
[1, 4, 8, 13, 18, 24], in each iteration we generated observations using
linear regression model with σ = 1

� Tuning parameters were obtain by applying the conservative and the
liberal strategies for target gFDR level 0.1

� Coefficients in βIj , for truly relevant group j, were generated such as
‖XIjβIj‖2 = 8

� Estimates were obtained by using the iterative version of gSLOPE with σ
estimation
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Defining groups by HCA
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Results
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