
Introduction Framework PLS method Link ortho. poly. Residuals Statistical properties Conclusion

Partial Least Squares
A new statistical
insight through

orthogonal
polynomials.

Mélanie Blazère
Institut de mathématiques de Toulouse

University Paul Sabatier
a

Work supervised by Fabrice Gamboa and Jean-Michel
Loubes

19th European Young Statisticians Meeting, Prague, September 2
1 / 20

PLS : an insight through orthorgonal polynomials
N



Introduction Framework PLS method Link ortho. poly. Residuals Statistical properties Conclusion

Outline

1 Introduction and outline of the presentation

2 Framework

3 Presentation of the PLS method

4 Link with orthogonal polynomials

5 New expression for the residuals

6 PLS statistical properties

7 Conclusion

2 / 20
PLS : an insight through orthorgonal polynomials

N



Introduction Framework PLS method Link ortho. poly. Residuals Statistical properties Conclusion

Framework

Overall framework

Linear regression model

Y = Xβ∗ + ε

where
• Y = (Y1, ...,Yn)T ∈ Rn is the response.
• X = (Xij )i,j ∈ Mn×p is the design matrix.
• β∗ = (β∗1 , ..., β

∗
p )

T ∈ Rp is the target parameter vector.
• ε = (ε1, ..., εn)T ∈ Rn are unobservable i.i.d random variables which

capture the noise.

Notation and assumptions
We allow p > n.
We denote by r the rank of XTX.

Goal : to estimate β∗ for future prediction.
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Framework

A useful tool : Singular Value Decom-
position

SVD of X given by

X = UDV T

where
U = (u1, ..., un) ∈ Mn,n and UTU = UUT = I .
V = (v1, ..., vp) ∈ Mp,p and VTV = VVT = I .
D ∈ Mn,p contains (

√
λ1, ...,

√
λr ) on the diagonal and zero anywhere else.

Assumptions
We assume that λ1 ≥ λ2 ≥ .... ≥ λr > 0.

Notations
Two important quantities :
ß pi = (Xβ∗)Tui, i = 1, ..., n.
ß p̂i = YTui, i = 1, ..., n.
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Framework

Limits of the OLS

Ordinary least squares

β̂OLS = (XTX )−1XTY =
n∑

i=1

p̂i√
λi

vi .

Limits when some covariates are nearly collinear, some λi are small
⇒ high variance of the estimator
⇒ unstability and unaccurate predictions.

Solution : regularization of the LS solution to decrease the variance.
⇒ penalization method (Ridge, Lasso,...)
⇒ dimension reduction method (PCR, PLS,..)
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Presentation of the PLS method

What is PLS ?

Main idea behind PLS
ä The PLS method at step k (where k ≤ r) consists in finding
(wl)1≤l≤k that maximize

[Cov(Y ,Xwl)]2 = Var(Y )Var(Xwl)Cor(Y ,Xwl)

under the constraints
‖wl‖2 = 1
tl = Xwl is orthogonal to t1, ..., tl−1.

ä Field of application : biomedecines, chemical engineering...

Some references
+Helland (2001), Some theoretical aspects of partial least squares regression , Chemometrics
and Intelligent Laboratory systems, 58,97–107.

+Rosipal R. and Kramer N. (2006), Overview and recent advances in partial least squares,
Subspace, Latent Structure and Feature selection, 34–51, Springer.
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Presentation of the PLS method

PLS estimator and link with Krylov
subspaces

Linear regression of Y onto t1,..., tk
Define WK the matrix whose columns are the (wk)1≤k≤K .

The PLS estimator

β̂PLS
K = WK (WK

TΣWK )−1WK
TXTY

Link with Krylov subspaces

Link with Krylov subspaces

Span {w1, ...,wK} = Span
{
XTY , (XTX )XTY , ..., (XTX )K−1XTY

}
.

The space spanned by XTY , (XTX )XTY , ..., (XTX )K−1XTY is called
the K th Krylov subspace with respect to XTX and XTY
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Presentation of the PLS method

PLS= LS on Krylov subspaces

PLS is the minimization of least squares over some Krylov subspaces.

Link between PLS and Krylov subspaces [Helland]
Proposition :

β̂PLS
k = argmin

β∈Kk (XTX ,XTY )

‖Y − Xβ‖2

where Kk(XTX ,XTY ) =
{
XTY , (XTX )XTY , ..., (XTX )k−1XTY

}
.

Be careful : the constraints are random !
2 Contrary to PCR, the PLS linear constraints are random.

Some references
+Helland I.S. (1988), On the structure of partial least squares regression, Communication in
statistics-Simulation and Computation,17, 581-607.

8 / 20
PLS : an insight through orthorgonal polynomials

N



Introduction Framework PLS method Link ortho. poly. Residuals Statistical properties Conclusion

Presentation of the PLS method

PLS= LS on Krylov subspaces

PLS is the minimization of least squares over some Krylov subspaces.

Link between PLS and Krylov subspaces [Helland]
Proposition :

β̂PLS
k = argmin

β∈Kk (XTX ,XTY )

‖Y − Xβ‖2

where Kk(XTX ,XTY ) =
{
XTY , (XTX )XTY , ..., (XTX )k−1XTY

}
.

Be careful : the constraints are random !
2 Contrary to PCR, the PLS linear constraints are random.

Some references
+Helland I.S. (1988), On the structure of partial least squares regression, Communication in
statistics-Simulation and Computation,17, 581-607.

8 / 20
PLS : an insight through orthorgonal polynomials

N



Introduction Framework PLS method Link ortho. poly. Residuals Statistical properties Conclusion

Link with orthogonal polynomials

Minimization over polynomials

-Blazere, M., Gamboa, F., Loubes, J. M. (2014), PLS : a new statistical insight through the
prism of orthogonal polynomials, arXiv preprint , arXiv :1405.5900.

Notation : Pk = Rk [X ] and by Pk,1 = {P ∈ Pk ;P(0) = 1}.
Another point of view

Optimization over polynomial spaces

Proposition : For k ≤ r we have β̂k = P̂k(XTX )XTY where

P̂k ∈ argmin
P∈Pk−1

‖Y − XP(XTX )XTY ‖2

and ‖Y − X β̂k‖2 = ‖Q̂k(XXT )Y ‖2 where

Q̂k(t) = 1− tP̂k(t) ∈ argmin
Q∈Pk,1

‖Q(XXT )Y ‖2.

PLS= regularization by polynomials approximation
Key idea= Cayley-Hamilton theorem
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Link with orthogonal polynomials

The residuals polynomials

Definition
The polynomials Q̂k are called the residual polynomials.

Interest of the residual polynomials
Most PLS objects can be written in terms of the residual polynomials.

Dependance of the PLS objects on the residual polynomials

• β̂k = P̂k (X
TX )XTY =

∑r
i=1

(
1− Q̂k (λi )

) p̂i√
λi

vi .

⇒ PLS estimator= shrinkage estimator with filter factor=1− Q̂k (λi )

• X β̂k = (I − Q̂k (XX
T ))Y =

∑r
i=1

(
1− Q̂k (λi )

)
p̂iui .

• Y − X β̂k = Q̂k (XX
T )Y =

∑r
i=1 Q̂k (λi )p̂iui +

{
0 if r = n∑n

i=r+1 p̂
2
i if r < n

.
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Link with orthogonal polynomials

Residual polynomials= Discrete ortho-
gonal polynomials

Discrete measure associated to (Q̂k)1≤k≤r

Discrete orthogonal polynomials
Proposition :
Q̂0 := 1, Q̂1, ..., Q̂r is a sequence of orthonormal polynomials with respect to
the measure

d µ̂ =
r∑

i=1

λip̂2
i δλi ,

where we recall that p̂i := uT
i Y .
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New expression for the residuals

Main result

An explicit analytical expression
Let k ≤ r and I+k = {(j1, ..., jk) : r ≥ j1 > ... > jk ≥ 1} .

Expression for the residuals polynomials

Q̂k(x) =
∑

(j1,..,jk )∈I+k

ŵ(j1,..,jk )

k∏
l=1

(1− x

λjl

).

where

Definition of the weights

ŵj1,..,jk :=
p̂2
j1 ...p̂

2
jk
λ2
j1 ...λ

2
jk
V (λj1 , ..., λjk )2∑

(j1,..,jk )∈I+k
p̂2
j1
...p̂2

jk
λ2
j1
...λ2

jk
V (λj1 , ..., λjk )2 .

with V (λj1 , ..., λjk ) = Vandermonde determinant of λj1 , ..., λjk

and p̂jk = Y Tujk .
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New expression for the residuals

A new insight on PLS

Q̂k(x) =
∑

(j1,..,jk )∈I+k
ŵ(j1,..,jk )

∏k
l=1(1−

x
λjl

)

Interest
2 Expression depends explicitly on the observations noise and on the
eigenelements of X
2 Contains all the information.

Weigths
Notice that 0 < ŵ(j1,..,jk ) ≤ 1 and

∑
(j1,..,jk )∈I+k

ŵ(j1,..,jk ) = 1.
Be careful : the weights are random

Interpretation
Residual polynomial Q̂k= convex combinaison of all the polynomials in
Pk,1 whose roots are subsets of {λ1, ..., λn}.
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PLS statistical properties

Upper bound for the empirical risk

An upper bound for the empirical risk

‖ Y − X β̂k ‖2≤
r∑

i=k+1

[
k∏

l=1

(
1−

λi

λl

)2
p̂2
i

]
+

n∑
i=r+1

p̂2
i .

Notice that if λr
λk

> 1− δ then
∑r

i=k+1

[∏k
l=1

(
1− λi

λl

)2
p̂2
i

]
≤ δ

∑r
i=k+1 p̂

2
i .

In particular, ‖ Y − X β̂k ‖2≤
∑n

i=k+1 p̂
2
i :=‖ Y − X β̂k

PCR ‖
2 .

Corollary
Let (εi )1≤i≤n be i.i.d centered random variables with commmon variance σ2.

E
(
1
n
‖ Y − X β̂k ‖2

)
≤

1
n

(
1−

λn

λ1

)2k
 r∑
i=k+1

λi (β
∗
i )

2 + (r − k)σ2

+
1
n

n∑
i=r+1

(
λi (β

∗
i )

2 + σ2
)
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PLS statistical properties

A new insight onto the PLS filter fac-
tors

PLS= SHRINKAGE ESTIMATOR

β̂k =
∑r

i=1(1− Q̂k(λi ))
p̂i√
λi
vi .

New expression for the PLS filter factor

f
(k)
i := 1− Q̂k(λi ) =

∑
(j1,..,jk )∈I+k

ŵ(j1,..,jk )

[
1−

k∏
l=1

(1− λi

λjl

)

]

Interest
It clearly and explicitely shows how the filter factors depend on the error
terms and on the eigenelements of X .
We easily recover that

• The PLS filter factors are not always in [0, 1].
• They oscillate below and above one.
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PLS statistical properties

Mean Square Prediction Error

-Blazere, M., Gamboa, F., Loubes, J. M. (2014), A unified framework for the study of the
PLS estimator’s properties, arXiv preprint , arXiv :1411.0229.

Definition
The Mean Square Prediction Error (MSPE) is defined by

MSPE(β̂k) := E
[
‖ X (β∗ − β̂k) ‖2

]
.

Question : Is the PLS factors not in [0, 1] a problem ?
Answer :

Decomposition of the MSPE

‖ Xβ∗ − X β̂k ‖2=
r∑

i=1

Q̂k (λi )p
2
i +

r∑
i=1

(
1− Q̂k (λi )

)
ε2i .

àA filter factor larger than one not necessarily implies an increase of the
MSE
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PLS statistical properties

PLS always shrinks for some specific
directions

PLS shrinks OLS in some of the eigenvectors directions but also expands
in others.
However PLS globally shrinks the OLS i.e. ‖ β̂k−1 ‖2≤‖ β̂k ‖2≤‖ β̂LS ‖2 .

For all 0 ≤ l ≤ r , let ŝl =
∑r

i=1

√
λi Q̂l(λi )p̂ivi . We have

β̂LS =
r−1∑
l=0

(
r∑

i=1

Q̂l(λi )p̂
2
i

)
ŝl
‖ ŝl ‖2

and

β̂k =
k−1∑
l=0

(
r∑

i=1

(Q̂l(λi )− Q̂k(λi ))p̂2
i

)
ŝl
‖ ŝl ‖2

.

But

0 ≤
r∑

i=1

(Q̂l(λi )− Q̂k(λi ))p̂2
i ≤

r∑
i=1

Q̂l(λi )p̂
2
i .

àPLS always shrinks the OLS in the ŝl directions.
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Conclusion

Conclusion

We have proposed a new approach to study PLS

We have established exact analytical expressions for the main PLS objects
(filter factors, empirical risk, MSPE)

This approach is useful to provide new interpretations, to shed lights on
the behaviour of PLS and to prove important properties of the PLS

This approach provides a unified framework to recover well known
properties of the PLS estimator

But this is not the end of the road.
The expression of the residuals should be explored further to completely
understand the PLS method.
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Thank you for your
attention
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Conclusion
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