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Introduction

I Lindley distribution (1958) [3, 4] was derived using the
Bayes’ theorem and in the last years has been in the
attention of statisticians as a suitable model for lifetime
data

I Lindley distribution has better properties that the
exponential one (2008)[2]

I The hazard rate function of the Lindley distribution is
increasing and not constant like the one of the
exponential distribution

I There are many generalizations and compounding of
the Lindley distribution: Pareto Poisson Lindley (2013)
[6], beta exponentiated power Lindley (2015) [7],
negative binomial Lindley (2010) [5], quasi Lindley
geometric (2014) [1], beta-Lindley (2014) [2], power
Lindley (2013) [3].
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Aim of paper

I Presentation of a new maintenance shock model using
geometric processes

I A example of this model using Lindley type distributions

I Using the mixture of the Lindley distribution, we
compare Lindley type distributions with exponential and
gamma type distributions

I Simulations for the maintenance shock model
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Quasi Lindley distribution [4](2013)

Let X ∼ QGL(a, θ) be a random variable quasi Lindley
distributed. Then the probability density of X is

f (x) =
θ

a + 1
e−θx(a + θx) (1)

and the corresponding cumulative function

F (x) = 1− a + 1 + θx

a + 1
e−θx , a > 0, θ > 0 (2)

• Mixture of gamma distributions

f (x) = pg(x) + (1− p)h(x)

where g(x) = θe−θx , h(x) = θ2xe−θx and p = a
a+1
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Quasi Lindley



A maintenance
model

Irina Adriana
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Hazard rate function
The hazard rate function is

h(x) =
θ(a + θx)

a + 1 + θx

h(x) is IFR.



A maintenance
model

Irina Adriana
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Mean and variance

The mean and the moments of order 2, 3 and 4 are

µ =
a + 2

θ(a + 1)
, µ2 =

2(a + 3)

θ2(a + 1)
, µ3 =

6(a + 4)

θ3(a + 1)
,

µ4 =
24(a + 5)

θ4(a + 1)

The variance of X is

σ2 =
a2 + 4a + 2

θ2(a + 1)2
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Entropy

Shannon entropy

H(f ) = −ln θ2

a + 1
+

a + 2

a + 1
− (a + 1)(lna− lnθ)− eaEi(−a)

a + 1

where Ei(x) =
∫ x
−∞

et

t dt is the integral exponential function

Renyi entropy

JR(γ) =
1

1− γ

{
2γlnθ+aγ+lnΓ(γ+1, aγ)−γln(a+1)−(γ+1)lnθγ

}
,

γ > 0, γ 6= 1
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Generation of date

1. Generate ui ∼ U(0, 1)

2. Generate vi ∼ Exp(θ)

3. Generate wi ∼ Gamma(2, θ)

4. If ui ≤ p = a
a+1 then xi = vi , otherwise xi = wi
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Transmuted quasi Lindley [4](2013)

Transmuted distributions have been introduced to model
data sets in various areas

I engineering-reliability data-transmuted Weibull
distribution

I finance, economics, modeling positive data- transmuted
Lomax distribution

I biomedical sciences- transmuted inverse exponential
distribution
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The Rank Transmutation Map (QRTM) is defined as

GR12(u) = u + λu(1− u), |λ| ≤ 1

Using cdf’s we have the relationship

F2(x) = (1 + λ)F1(x)− λF1(x)2

and for densities

f2(x) = f1(x)[(1 + λ)− 2λF1(x)]

where f1(x) and f2(x) are the corresponding probability
density function associated with the cumulative density
functions F1(x) and F2(x), respectively. For more details see
Shaw et al. (2007)[8].
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Transmuted quasi Lindley

Let X ∼ TQGL(a, θ, γ), a, θ > 0, |γ| ≤ 1. The pdf is

f (x) =
θ

a + 1
e−θx(a + θx)

[
(1− γ) + 2γ

a + 1 + θx

a + 1
e−θx)

]
and the cdf

F (x) =
[
1−a + 1 + θx

a + 1
e−θx

][
1+λ

a + 1 + θx

a + 1
e−θx

]
, x > 0
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Băncescu

Introduction

Aim of paper

Quasi Lindley

Transmuted quasi
Lindley

Maintenance
model

Replacement
strategy

Results

Maintenance model
and the quasi Lindley
distribution

Maintenance model
and the transmuted
quasi Lindley
distribution

Conclusions

The transmuted quasi Lindley has the following submodels

I λ = 0 we get the quasi Lindley distribution

I λ = −1 we get the exponentiated quasi Lindley

I a = 0 we get the transmuted gamma distribution

I a→∞ we get the transmuted exponential distribution
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The mean of X is

µ =
(1 + γ)(a + 2)

8(a + 1)
− 2γ

8θ(a + 1)2

[
(a+ 2)(8θ−2(a+ 1))−1

]

The hazard rate function of X is

h(x) =
θ

a+1e
−θx(a + θx)

[
(1− γ) + 2γ a+1+θx

a+1 e−θx
]

1−
[
1− a+1+θx

a+1 e−θx
][

1 + γ a+1+θx
a+1 e−θx

]
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Data generation

1. Generate ui ∼ Uniform(0, 1)

2. Generate vi ∼ Exp(θ)

3. Generate wi ∼ Gamma(2, θ)

4. If ui < p = a
a+1 xi = (1 + γ)vi − γv2

i otherwise

xi = (1 + γ)wi − γw2
i
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hazard rate function
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Maintenance model

• Considering the shock model proposed by Lam. Y
(2007) [5], we developed a new shock model considering two
types of shocks.
• A system can be affected by multiple shock that are
independent with one producing more damage than the
other one, so the time of repair is greater.
• Let suppose we have a system with one component.
The random external deteriorating factors reduces the
functioning time of the system

Definition
[5] A sequence of nonnegative random variables {Xn}n≥0 is
said to be a geometric process (GP) if they are independent
and the distribution function of Xn is given by F (an−1x) for
n ≥ 0, where a > 0 is called the ratio of the GP.
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Assumptions

I We start with a newly instaled system at t=0. When
the system fails it is repaired. A maintenance strategy
N is adopted: the system is replaced with a new
identical one after the Nth failure.

I Let Xn be the operating time of the system after the
(n-1)th repair, E (Xn) > 0, (Xn)n form a geometric
process with ratio a ≥ 1.

I Let Yn = αY
(1)
n + (1− α)Y

(2)
n , 0 ≤ α ≤ 1 where Y

(1)
n

is the repair time of the system after the nth failure of

type I, {Y (1)
n }n≥0 forms a geometric process with ratio

0 < b1 ≤ 1, E (Y
(1)
1 ) = µ1 ≥ 0, and Y

(2)
n is the repair

time of the system after the nth failure of type II,

{Y (2)
n }n≥0 forms a geometric process with ratio

0 < b2 ≤ 1, E (Y
(2)
1 ) = µ2 ≥ 0, µ1 ≤ µ2.

I Let Z be the replacement time, E (Z ) = δ
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I The system suffers 2 kinds of shocks which occur
randomly. Let N1(t) be the number of shocks of type I
by time t, (N1(t))t is a counting process having
stationary and independent increment.
Let N2(t) be the number of shocks of type II by time t,
(N2(t))t is a counting process having stationary and
independent increment.
Any shock arriving after failure gives no effect on the
failed system. The succesive reductions in the system
operating time are additive.

I Let W
(1)
n be the reduction in the system operating time

following the nth random shock of type I, W
(1)
n are

independent identically distributed.

Let W
(2)
n be the reduction in the system operating time

following the nth random shock of type II, W
(2)
n are

independent identically distributed.

E (W
(1)
n ) ≤ E (W

(2)
n )
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I {Xn}n, (N1(t))t≥0, (N2(t))t≥0, (W
(1)
n )n and (W

(2)
n )n

are independent

I Let r be the reward rate of the system and c the
average cost of repair. The cost of replacement has two
parts: the basic costs R and a part that is proportional
with the time of replacement Z, with rate cp
representing the cost of labor, energy, etc.

• The number of shocks in (tn−1, tn−1 + t] is

N(tn−1, tn−1 + t] = N(tn−1 + t)− N(tn−1)

where N(tn−1) is the number of shocks until tn−1 time and
N(tn−1 + t) the number of shocks until tn−1 + t time.
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N(tn−1) = N1(tn−1) + N2(tn−1)

N(tn−1 + t) = N1(tn−1 + t) + N2(tn−1 + t)

where N1(tn−1) and N2(tn−1) are the number of shocks of
type I, type II, respectively until tn−1 and N1(tn−1 + t) and
N2(tn−1 + t) are the number of shocks of type I, type II,
respectively until tn−1 + t.
• The total functioning reduced time in (tn−1, tn−1 + t] is

TR(tn−1,tn−1+t] =

N1(tn−1+t)∑
i=N1(tn−1)+1

W
(1)
i +

N2(tn−1+t)∑
i=N2(tn−1)+1

W
(2)
i

=

N1(tn−1,tn−1+t)∑
i=1

W
(1)
i +

N2(tn−1,tn−1+t)∑
i=1

W
(2)
i
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The residual time at tn−1 + t time is

Sn(t) = Xn − t − TR(tn−1,tn−1+t]

If Sn(t) < 0, then the system fails.
The real functioning time of the system after the (n-1)th
repair is given by

X
′
n = inf

t≥0
{t|Sn(t) ≤ 0}

Lemma

P(Xn = t − TR(tn−1,tn−1+t] > 0,∀t ∈ [0, t
′
])

= P(Xn − t
′ − TR(tn−1, tn−1 + t

′
] > 0)
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For the real operating time of the system we have

P(X
′
n > t

′ |N1(tn−1, tn−1 + t
′
) = k1,N2(tn−1, tn−1 + t

′
) = k2)

= 1−
∫ ∞

0
Fn(t

′
+ x)dHk1,k2(x)dx (3)

where Fn(x) = F (an−1x) and Hk1,k2(x)dx are the cumulative

distribution function of Xn and

k1∑
i=1

W
(1)
i +

k2∑
i=1

W
(2)
i ,

respectively.
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The real operating time of the system is

P(X
′
n ≤ x) =

∞∑
k1=0

∞∑
k2=0

∫ ∞
0

Fn(x + ω)dHk1,k2(ω)

× P(N1(x) = k1)P(N2(x) = k2) (4)

We say a cycle is complet when a replacement is complet.
So, consecutive cycles together with the corresponding costs
form a renewal reward process. [5].
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Using the replacement strategy N: the system is replaced
with a new identical one after the Nth failure, we obtain the
following average cost:

C (N) =

E
[
c
N−1∑
n=1

Yn − r
N∑

n=1

X
′
n + R + cpZ

]
E
[ N−1∑
n=1

X
′
n +

N−1∑
n=1

Yn + Z
]

=

cαµ1

N−1∑
n=1

1

bn−1
1

+ c(1− α)µ2

N−1∑
n=1

1

bn−1
2

− r
N∑

n=1

λ
′
n + R + cpδ

N∑
n=1

λ
′
n + αµ1

N−1∑
n=1

1

bn−1
1

+ (1− α)µ2

N−1∑
n=1

1

bn−1
2

+ δ

= P(N)− r
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where λ
′
n = E (X

′
n) and

P(N) =

(c + r)
[
µ1α

N−1∑
n=1

1

bn−1
1

+ µ2(1− α)
N−1∑
n=1

1

bn−1
2

]
+ R + cpδ + rδ

N∑
n=1

λ
′
n + αµ1

N−1∑
n=1

1

bn−1
1

+ (1− α)µ2

N−1∑
n=1

1

bn−1
2

+ δ
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Let

h(N) =
1

(R + cpδ + rδ)
[
(b1b2)N−1λ

′
N+1 + αµ1b

N−1
2 + µ2(1− α)bN−1

1

]
×

{
(c + r)

[
(bN−1

2 µ1α + µ2(1− α)bN−1
1 )

N∑
n=1

λ
′
n

− λ′N+1(bN−1
2 µ1α

N−1∑
n=1

bn1 + bN−1
1 µ2(1− α)

N−1∑
n=1

bn2)

+ δ(µ1αb
N−1
2 + µ2(1− α)bN−1

1 )
]}
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We have the following results

Lemma
λ
′
n is a nonincreasing function in n

Lemma
h(N) is a nondecreasing function in N

Theorem
The optim replacement strategy N∗ is determined so that

N∗ = min{N|h(N) ≥ 1}

N∗ is unique if and only if h(N∗) > 1.
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• Considering the extended model proposed we consider
two cases and for each of it simulation application.
We consider the reduction times in the system operating

time to be exponential distributed, W
(1)
n ∼ Exp(λ1) and

W
(2)
n ∼ Exp(λ2), λ1 ≤ λ2 and 2 cases

I Case 1 (Xn)n ∼ QGL(a1, θ1) and

(Y
(1)
n )n ∼ QGL(a2, θ2), (Y

(2)
n )n ∼ QGL(a3, θ3)

I Case 2 (Xn)n ∼ TQGL(a1, θ1, γ1) and

(Y
(1)
n )n ∼ TQGL(a2, θ2, γ2), (Y

(2)
n )n ∼ TQGL(a3, θ3, γ3)

• We consider also that (N1(t))t and (N2(t))t are Poisson
processes of intensity λN1 and λN2 .
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Theorem
[5](2014) Let Xi ∼ Gamma(αi , βi ), αi , βi > 0, i = 1, n,
independent and S = X1 + · · ·Xn. Let
Xm ∼ Gamma(αm, βm) denote the approximating gamma
distribution of S associated with the moment matching
method. We have

E (Xm) = αmβm, E (S) =
n∑

i=1

αiβi

Var(Xm) = αmβ
2
m, Var(S) =

n∑
i=1

αiβ
2
i

where αm = µ2

n∑
i=1

αiβ
2
i

, βm =

n∑
i=1

αiβ
2
i

µ and µ =
n∑

i=1

αiβi
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The distribution of

k1∑
i=1

W
(1)
i +

k2∑
i=1

W
(2)
i is given by the

following theorem

Theorem

Let S =

k1∑
i=1

W
(1)
i +

k2∑
i=1

W
(2)
i . Then

S ∼ Gamma(αm, βm)

, where

αm =
(k1λ1 + k2λ2)2

k1λ2
1 + k2λ2

2

, βm =
k1λ

2
1 + k2λ

2
2

k1λ1 + k2λ2
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Case 1

The probability function of the real functioning time of the
system after the (n-1)th repair is

P(X
′
n ≤ x) =

∞∑
k1=0

∞∑
k2=0

{
1− e−θ1xan−1

(a1 + 1)βαm
m Γ(αm)

I

}

× e−λN1x(λN1x)k1

k1!

e−λN2x(λN2x)k2

k2!

where I = θ1a
n−1zαm+1Γ(αm)Ψ(αm, αm + 2, λΨz),

λΨ = θ1a
n−1 + 1

βm
, z = a1+1+θ1xan−1

θ1an−1 ; Γ(s) =
∫∞

0 x s−1e−xdx
is the gamma function and Ψ(·, ·, ·) Kummer function,
Ψ(a, b, u) =

1

Γ(a)

∫ ∞
0

ta−1(1+t)b−a−1e−utdt, Re(a),Re(u) > 0, b ∈ C
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Case 1.1

• For λ1 = λ2 = 1, λN1 = 3, λN2 = 0.5, δ = 4, r = 5, c =
5,R = 10, cp = 5, α = 0.4, b1 = 0.87, b2 = 0.7, a = 2 and
• a1 = 0.02, θ1 = 2, a2 = 0.03, θ2 = 3, a3 = 0.05, θ3 = 2
we have

Tabela: Case 1.1

N h(N) C(N) N h(N) C(N)

20 0.7854168 4.753316 27 1.055361 4.971424
21 0.8246262 4.816599 28 1.093465 4.97922
22 0.8638435 4.864317 29 1.131432 4.984915
23 0.9023237 4.900046 30 1.169358 4.989065
24 0.9406939 4.926618
25 0.9790204 4.946283
26 1.017254 4.960777
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Case 1.2

• For λ1 = λ2 = 1, λN1 = 3, λN2 = 0.5, δ = 4, r = 5, c =
5,R = 10, cp = 5, α = 0.4, b1 = 0.87, b2 = 0.7, a = 2 and
• a1 = 1.7, θ1 = 4, a2 = 3, θ2 = 7, a3 = 4, θ3 = 2 we have

Tabela: Case 1.2

N h(N) C(N) N h(N) C(N)

20 0.7636672 4.613763 27 1.02722 4.954912
21 0.8018419 4.712099 28 1.063932 4.96722
22 0.8397631 4.786613 29 1.100854 4.97621
23 0.8773941 4.842579
24 0.9153349 4.884313
25 0.9527026 4.915274
26 0.9897275 4.938122
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Case 1.2

• For λ1 = λ2 = 1, λN1 = 3, λN2 = 0.5, δ = 4, r = 5, c =
5,R = 10, cp = 5, α = 0.4, b1 = 0.87, b2 = 0.7, a = 2 and
• a1 = 100, θ1 = 4, a2 = 3000, θ2 = 7, a3 = 4000, θ3 = 2
we have

Tabela: Case 1.3

N h(N) C(N) N h(N) C(N)

20 0.7593386 4.543052 27 1.021854 4.946206
21 0.7974994 4.658628 28 1.059124 4.960862
22 0.8353168 4.746551 29 1.096204 4.97158
23 0.8729748 4.812782
24 0.9103821 4.862286
25 0.947708 4.899051
26 0.9848449 4.926218
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Figura: Case 1.1 and Case 1.2
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Case 2

The probability function of the real functioning time of the
system after the (n-1)th repair is

P(X
′
n ≤ x) =

∞∑
k1=0

∞∑
k2=0

{
1 +

e−θ1xan−1

(a1 + 1)βαm
m Γ(αm)

I (γ − 1)− γJ

}

× e−λN1x(λN1x)k1

k1!

e−λN2x(λN2x)k2

k2!

where I = θ1a
n−1zαm+1Γ(αm)Ψ(αm, αm + 2, λΨz),

λΨ = θ1a
n−1 + 1

βm
, z = a1+1+θ1xan−1

θ1an−1 and

J =
e−2θ1xa

n−1
θ2

1a
2(n−1)

(a1+1)2βαm
m Γ(αm)

zαm+2Γ(αm)Ψ(αm, αm + 3, λ∗Ψz),

λ∗Ψ = 2θ1a
n−1 + 1

βm



A maintenance
model

Irina Adriana
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Case 1.2

• For λ1 = λ2 = 1, λN1 = 3, λN2 = 0.5, δ = 4, r = 5, c =
5,R = 6, cp = 3, α = 0.7, b1 = 0.3, b2 = 0.8, a = 2 and
• a1 = 0.5, θ1 = 8, γ1 = −0.5, a2 = 0.7, θ2 = 4, γ2 =
−0.6, a3 = 0.4, θ3 = 10, γ3 = −0.9 we have

Tabela: Case 1.3

N h(N) C(N)

10 0.7887837 4.990034
11 0.851982 4.996723
12 0.9133332 4.998933
13 0.974314 4.999655
14 1.033471 4.999889
15 1.09242 4.999965
16 1.152533 4.999989
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Figura: Case 2
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Conclusions

I There isn’t a huge difference between the quasi Lindley
distribution and the exponential and gamma
distribution in terms of the maintenance model

I Using the new model we can develop replacements
strategies for systems that are subjected to multiple
shocks that come at the same moment or not
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Thank you for you attention!
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