# Valid confidence intervals for post-model-selection predictors

François Bachoc, Hannes Leeb et Benedikt M. Pötscher

University of Vienna

## Full linear model

(Full) linear model

$$Y = X\beta + U$$

- **Y** of size  $n \times 1$ : observation vector
- **X** of size  $n \times p$ : design matrix
- lacksquare eta of size  $p \times 1$ : regression coefficients
- $\mathbf{U} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$
- p < n</p>

 $\Longrightarrow$  Working distribution  $P_{n,\beta,\sigma}$ 

Least square estimator:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{Y}$$

Standard variance estimator:

$$\hat{\sigma}^2 = \frac{1}{n-p} ||\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}||^2$$



## Linear submodels

#### Linear submodels

Subsets  $M \subset \{1,...,p\}$  of the columns of X. Give

$$\mathbf{Y} = \mathbf{X}[M]\mathbf{v} + \mathbf{U}$$

- M of cardinality m
- **X**[M] of size  $n \times m$ : only the columns of **X** that are in M
- $\mathbf{v}$  of size  $m \times 1$ : needs to be defined/estimated to give the best representation of the full linear model

Non-standard regression coefficient vector

$$\beta_M^{(n)} = \underset{\mathbf{v}}{\operatorname{argmin}} ||\mathbf{X}\beta - \mathbf{X}[M]\mathbf{v}||$$
$$\beta_M^{(n)} = \beta[M] + (\mathbf{X}'[M]\mathbf{X}[M])^{-1} \mathbf{X}'[M]\mathbf{X}[M^c]\beta[M^c],$$

lacksquare eta[M] of size  $m \times 1$ : components of eta in M

Restricted least square estimator

$$\hat{\boldsymbol{\beta}}_{M} = \left(\boldsymbol{X}'[M]\boldsymbol{X}[M]\right)^{-1}\boldsymbol{X}'[M]\boldsymbol{Y}_{\square \rightarrow \square} + \mathbb{R} \rightarrow \mathbb{$$

The non-standard target of Berk et al.

# Model selection procedure

Data-driven selection of the model with  $\hat{M}(\mathbf{Y}) = \hat{M}$ 

Ex.: sequential testing, AIC, BIC, LASSO

Berk et al., 2013, Annals of Statistics consider the non-standard target

$$\boldsymbol{\beta}_{\hat{M}}^{(n)}$$

as their target for confidence intervals

#### Comments:

- Model selector  $\hat{M}$  is "imposed"
- Objective : best coefficients in this imposed model
- Random target

#### **Predictors**

Let  $\mathbf{x}_0$  be a fixed  $p \times 1$  vector and consider

$$y_0 = \boldsymbol{x}_0' \boldsymbol{\beta} + u_0$$

$$\mathbf{u}_0 \sim \mathcal{N}(\mathbf{0}, \sigma^2)$$

We consider the design-dependent non-standard target

$$\boldsymbol{x}_0'[\hat{M}]\boldsymbol{\beta}_{\hat{M}}^{(n)}$$

Optimality property: when  $x_0$  is random and follows the empirical distribution given by the lines of X:

$$\mathbb{E}_{n,\boldsymbol{\beta},\sigma}\left(\left[y_0-\boldsymbol{x}_0'[\hat{M}]\boldsymbol{\beta}_{\hat{M}}^{(n)}\right]^2\right)\leq \mathbb{E}_{n,\boldsymbol{\beta},\sigma}\left(\left[y_0-\boldsymbol{x}_0'[\hat{M}]\boldsymbol{\nu}(\boldsymbol{Y})\right]^2\right),$$

for any function  $v(Y) \in \mathbb{R}^{|\hat{M}|}$ .



## Confidence intervals

Let a nominal level  $1 - \alpha \in (0, 1)$  be fixed

We consider confidence intervals for  $\mathbf{x}_0'[\hat{M}]\beta_{\hat{M}}^{(n)}$  of the form

$$CI = \mathbf{x}_0'[\hat{M}]\hat{\boldsymbol{\beta}}_{\hat{M}} \pm K||\mathbf{s}_{\hat{M}}||\hat{\boldsymbol{\sigma}},$$

with

$$\mathbf{s}_{M}' = \mathbf{x}_{0}'[M] \left( \mathbf{X}'[M] \mathbf{X}[M] \right)^{-1} \mathbf{X}'[M]$$

#### Interpretation

- "Constant" K does not depend on Y (but on  $X, \mathbf{x}_0, \hat{M}$ )
- $\blacksquare$  For fixed M,

$$\mathbf{x}_0'[M]\hat{\boldsymbol{\beta}}_M - \mathbf{x}_0'[M]\boldsymbol{\beta}_M^{(n)} \sim \mathcal{N}(0, ||\mathbf{s}_M||\sigma^2)$$

- Thus,  $K_{naive} = q_{S,n-p,1-\alpha/2}$  (Student quantile) is valid when M is deterministic
- When  $\hat{M}$  is random, K needs to be larger (e.g. Leeb et al. 2015, Statistical Science)
- $\Longrightarrow$  Main issue : choosing K



Observe that

$$\mathbf{x}_0'[\hat{M}]\hat{eta}_{\hat{M}} - \mathbf{x}_0'[\hat{M}]eta_{\hat{M}}^{(n)} = \mathbf{s}_{\hat{M}}'(\mathbf{Y} - \mathbf{X}eta)$$

Then, we have

$$\left|\frac{\mathbf{s}_{\hat{M}}^{\prime}}{||\mathbf{s}_{\hat{M}}^{\prime}||\hat{\sigma}}\left(Y-\boldsymbol{X}\boldsymbol{\beta}\right)\right| \leq \max_{M\subseteq\{1,\ldots,\rho\}}\left|\frac{\mathbf{s}_{M}^{\prime}}{||\mathbf{s}_{M}^{\prime}||\hat{\sigma}}\left(Y-\boldsymbol{X}\boldsymbol{\beta}\right)\right|$$

Distribution of the upper-bound does not depend on  $\beta$ ,  $\sigma \Longrightarrow \text{let } K_1$  be its  $(1 - \alpha)$  quantile

The CI given by  $K_1$  satisfies

$$\inf_{\boldsymbol{\beta} \in \mathbb{R}^p, \sigma > 0} P_{n,\boldsymbol{\beta},\sigma} \left( \mathbf{x}_0'[\hat{M}] \boldsymbol{\beta}_{\hat{M}}^{(n)} \in CI \right) \ge 1 - \alpha$$

→ Uniformly valid confidence interval



## Construction of new confidence intervals

The constant  $K_1$  depends on all the components of  $\mathbf{x}_0$ 

It can happen that only  $\mathbf{x}_0[\hat{M}]$  is observed

model selection for cost reason

We construct other constants (see the paper for details)

$$K_1 \leq K_2 \leq K_3 \leq K_4$$

(The CIs given by  $K_2$ ,  $K_3$ ,  $K_4$  are hence universally valid)

**Remark :** The case where only  $\mathbf{x}_0[\hat{M}]$  is observed motivates all the more the study of  $\mathbf{x}_0'[\hat{M}]\beta_{\hat{M}}^{(n)}$  as opposed to  $\mathbf{x}_0'\mathcal{B}$ 

# Design-independent non-standard target

**Issue :** The target  $\mathbf{x}_0'[\hat{M}]\beta_{\hat{M}}^{(n)}$  depends on  $\mathbf{X}$ 

Issue is solved when lines of  $\textbf{\textit{X}}$  and  $\textbf{\textit{x}}_0'$  are realizations from the same distribution  $\mathcal L$ 

Let, for  $\mathbf{x}'\sim\mathcal{L}$ ,  $\mathbf{\Sigma}=\mathbb{E}(\mathbf{x}\mathbf{x}')$ . Then, define the design-independent non-standard target by

$$\mathbf{x}_0[\hat{M}]'\beta_{\hat{M}}^{(\star)} = \mathbf{x}_0[\hat{M}]'\beta[\hat{M}] + \mathbf{x}_0[\hat{M}]'\left(\mathbf{\Sigma}[\hat{M},\hat{M}]\right)^{-1}\mathbf{\Sigma}[\hat{M},\hat{M}^c]\beta[\hat{M}^c],$$

Then, we have for  $\mathbf{x}_0 \sim \mathcal{L}$ ,

$$\mathbb{E}\left(\left[y_0 - \mathbf{x}_0'[\hat{M}]\beta_{\hat{M}}^{(\star)}\right]^2\right) \leq \mathbb{E}\left(\left[y_0 - \mathbf{x}_0'[\hat{M}]\mathbf{v}(\mathbf{Y})\right]^2\right),$$

for any function  $\mathbf{v}(\mathbf{Y}) \in \mathbb{R}^{|\hat{M}|}$ 



# Asymptotic coverage when p is fixed and $n \to \infty$

Observe that

$$\begin{split} \left(\mathbf{x}_0[\hat{M}]'\boldsymbol{\beta}_{\hat{M}}^{(\star)} - \mathbf{x}_0[\hat{M}]'\boldsymbol{\beta}_{\hat{M}}^{(n)}\right) = \\ \mathbf{x}_0'[\hat{M}] \left(\left(\mathbf{X}'[\hat{M}]\mathbf{X}[\hat{M}]\right)^{-1}\mathbf{X}'[\hat{M}]\mathbf{X}[\hat{M}^c] - \left(\mathbf{\Sigma}[\hat{M},\hat{M}]\right)^{-1}\mathbf{\Sigma}[\hat{M},\hat{M}^c]\right)\boldsymbol{\beta}[\hat{M}^c] \end{split}$$

#### **Theorem**

Assume that

$$\sqrt{n}\left[\left(\mathbf{X}'\mathbf{X}/n\right)-\mathbf{\Sigma}\right]=O_p(1)$$

and that for any M with |M| < p and for any  $\delta > 0$ ,

$$\sup\left\{P_{n,\beta,\sigma}(\hat{M}=M|\boldsymbol{X}):\boldsymbol{\beta}\in\mathbb{R}^{p},\sigma>0,\left\|\boldsymbol{\beta}[\boldsymbol{M}^{c}]\right\|/\sigma\geq\delta\right\}=o_{p}(1)$$

Then, for CI obtained by  $K_1, K_2, K_3, K_4$ ,

$$\inf_{\boldsymbol{\beta} \in \mathbb{R}^{\rho}, \sigma > 0} P_{n,\boldsymbol{\beta},\sigma} \left( \mathbf{x}_0'[\hat{\boldsymbol{M}}] \boldsymbol{\beta}_{\hat{\boldsymbol{M}}}^{(\star)} \in CI \middle| \mathbf{X} \right) \geq (1 - \alpha) + o_{\rho}(1)$$



# Simulation study

For  $\alpha = 0.05$  and p = 10 we evaluate

$$\inf_{\boldsymbol{\beta} \in \mathbb{R}^{p}, \sigma > 0} P_{n, \boldsymbol{\beta}, \sigma} \left( \left. \boldsymbol{x}_{0}^{\prime}[\hat{\boldsymbol{M}}] \boldsymbol{\beta}_{\hat{\boldsymbol{M}}}^{(n, \star)} \in \textit{CI} \right| \boldsymbol{\textit{X}} \right),$$

for one realization of X

## Results:

| n   | model    | target                                                 |       |      |       |                                                            |       |      |       |
|-----|----------|--------------------------------------------------------|-------|------|-------|------------------------------------------------------------|-------|------|-------|
|     | selector | design-dependent                                       |       |      |       | design-independent                                         |       |      |       |
|     |          | $\mathbf{x}_0[\hat{M}]'oldsymbol{eta}_{\hat{M}}^{(n)}$ |       |      |       | $\mathbf{x}_0[\hat{M}]'oldsymbol{eta}_{\hat{M}}^{(\star)}$ |       |      |       |
|     |          | K <sub>naive</sub>                                     | $K_1$ | ÏK₃  | $K_4$ | K <sub>naive</sub>                                         | $K_1$ | ̈́K₃ | $K_4$ |
| 20  | AIC      | 0.84                                                   | 0.99  | 1.00 | 1.00  | 0.79                                                       | 0.97  | 0.99 | 0.99  |
| 20  | BIC      | 0.84                                                   | 0.99  | 1.00 | 1.00  | 0.74                                                       | 0.96  | 0.98 | 0.98  |
| 20  | LASSO    | 0.90                                                   | 1.00  | 1.00 | 1.00  | 0.18                                                       | 0.48  | 0.61 | 0.61  |
| 100 | AIC      | 0.87                                                   | 0.99  | 1.00 | 1.00  | 0.88                                                       | 0.99  | 1.00 | 1.00  |
| 100 | BIC      | 0.88                                                   | 0.99  | 1.00 | 1.00  | 0.87                                                       | 0.99  | 1.00 | 1.00  |
| 100 | LASSO    | 0.88                                                   | 0.99  | 1.00 | 1.00  | 0.87                                                       | 0.99  | 1.00 | 1.00  |

#### Conclusion

- It is known that in the classical case (estimation of  $\beta$ ), it is difficult to construct valid post-model-selection confidence intervals
- Recently, alternative coefficients have been studied Berk et al. 2013
  - this removes some obstacles
  - but naive procedures still fail
- We extend the confidence intervals to prediction
  - exact coverage of the design-dependent target
  - asymptotic coverage of the design-independent target

## The paper :

F. Bachoc, H. Leeb, B.M. Pötscher. Valid confidence intervals for post-model-selection predictors,

http://arxiv.org/abs/1412.4605

Thank you for your attention!

